File size: 23,725 Bytes
e1412bc
 
 
 
 
 
 
 
5f8297f
 
 
 
 
e1412bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8297f
 
 
e1412bc
 
 
 
 
 
 
 
 
 
bb029fa
e1412bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a81bf6e
 
 
 
e1412bc
 
5f8297f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508fd98
e1412bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508fd98
 
 
 
a81bf6e
508fd98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0951938
e385e48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8297f
0951938
a81bf6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8297f
a81bf6e
5f8297f
 
a81bf6e
 
 
e1412bc
508fd98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1412bc
 
 
 
 
 
5f8297f
e1412bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8297f
 
 
e1412bc
 
 
 
 
 
 
 
 
 
5f8297f
e1412bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f8297f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
"""
This file contains the Predictor class, which is used to run predictions on the
Whisper model. It is based on the Predictor class from the original Whisper
repository, with some modifications to make it work with the RP platform.
"""

from concurrent.futures import ThreadPoolExecutor
import numpy as np
import base64
from pydub.utils import mediainfo
import tempfile



from runpod.serverless.utils import rp_cuda
import boto3
import random
random.seed(0)
from glob import glob
import subprocess

import io

import numpy as np
np.random.seed(0)
import subprocess
import se_extractor

import yaml
from munch import Munch
import uuid
import shutil
from openai import OpenAI


import time
import os
import phonemizer
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from nltk.tokenize import word_tokenize
import nltk
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
nltk.download('punkt')
from models import *
from utils import *
import soundfile as sf
from tortoise.utils.text import split_and_recombine_text
from resemble_enhance.enhancer.inference import denoise, enhance
from text_utils import TextCleaner
from pydantic import BaseModel, HttpUrl
from api import BaseSpeakerTTS, ToneColorConverter

from pydub import AudioSegment


class Predictor:
    def __init__(self):
        self.model = None
        self.sampler = None
        self.to_mel = None
        self.global_phonemizer = None
        self.model_params = None
        self.textclenaer = None
        self.mean = 0
        self.std = 0
        self.device = 'cuda'

        self.ckpt_base = 'checkpoints/base_speakers/EN'
        self.ckpt_converter = 'checkpoints/converter'
        self.base_speaker_tts = None
        self.tone_color_converter = None
        self.output_dir = 'outputs'
        self.processed_dir = 'processed'
        os.makedirs(self.processed_dir, exist_ok=True)
        os.makedirs(self.output_dir, exist_ok=True)
        self.s3_client = boto3.client('s3',aws_access_key_id=os.getenv('AWS_ACCESS_KEY'), aws_secret_access_key=os.getenv('AWS_SECRET_KEY'))
        print(os.getenv("AWS_ACCESS_KEY"))
        print(os.getenv("AWS_SECRET_KEY"))


    def setup(self):
        self.global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True,  with_stress=True)
        self.textclenaer = TextCleaner()
        self.to_mel = torchaudio.transforms.MelSpectrogram(
            n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
        self.mean, self.std = -4, 4

        config = yaml.safe_load(open("Configs/hg.yml"))
        print(config)

        ASR_config = config.get('ASR_config', False)
        ASR_path = config.get('ASR_path', False)
        text_aligner = load_ASR_models(ASR_path, ASR_config)

        F0_path = config.get('F0_path', False)
        pitch_extractor = load_F0_models(F0_path)

        from Utils.PLBERT.util import load_plbert
        BERT_path = config.get('PLBERT_dir', False)
        plbert = load_plbert(BERT_path)

        self.model_params = recursive_munch(config['model_params'])
        self.model = build_model(self.model_params, text_aligner, pitch_extractor, plbert)
        _ = [self.model[key].eval() for key in self.model]
        _ = [self.model[key].to(self.device) for key in self.model]

        params_whole = torch.load("Models/epochs_2nd_00020.pth", map_location='cpu')
        params = params_whole['net']

        for key in self.model:
            if key in params:
                print('%s loaded' % key)
                try:
                    self.model[key].load_state_dict(params[key])
                except:
                    from collections import OrderedDict
                    state_dict = params[key]
                    new_state_dict = OrderedDict()
                    for k, v in state_dict.items():
                        name = k[7:] # remove `module.`
                        new_state_dict[name] = v
                    # load params
                    self.model[key].load_state_dict(new_state_dict, strict=False)
        #             except:
        #                 _load(params[key], model[key])
        _ = [self.model[key].eval() for key in self.model]
        self.sampler = DiffusionSampler(
            self.model.diffusion.diffusion,
            sampler=ADPM2Sampler(),
            sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
            clamp=False
        )
        self.base_speaker_tts = BaseSpeakerTTS(f'{self.ckpt_base}/config.json', device=self.device)
        self.base_speaker_tts.load_ckpt(f'{self.ckpt_base}/checkpoint.pth')
        self.tone_color_converter = ToneColorConverter(f'{self.ckpt_converter}/config.json', device=self.device)
        self.tone_color_converter.load_ckpt(f'{self.ckpt_converter}/checkpoint.pth')


    def createvoice(self,audio_base_64,cut_audio,process_audio):
        file_bytes = base64.b64decode(audio_base_64)
        file_buffer = io.BytesIO(file_bytes)

        header = file_buffer.read(12)
        print(header)
        file_format = None
        bucket_name = 'demovidelyuseruploads'
        if b'WAVE' in header:
            file_format = 'wav'
        elif header.startswith((b'\xff\xfb', b'\xff\xf3', b'\xff\xe3', b'\xff\xfa')):
            file_format = 'mp3'
        else:
            file_format = 'unknown'
        if file_format == 'unknown':
            return {'error':'unrecognized file format, encode audio file as base64 str'}

        unique_filename = f"{uuid.uuid4()}"

        local_filename = f"{unique_filename}.{file_format}"
        with open(local_filename, 'wb') as file_out:
            file_out.write(file_bytes)

        wav_filename = local_filename
        if file_format == "mp3":
            wav_filename = f"{unique_filename}.wav"
            subprocess.run(["ffmpeg", "-i", local_filename, wav_filename])
            os.remove(local_filename)
        print(wav_filename)

        # if cut_audio > 0, means it was set
        if cut_audio > 0:
            #need to cut
            se_extractor.extract_segments_to_cut_audio(cut_audio,wav_filename)
            
        file_url = f"https://{bucket_name}.s3.amazonaws.com/{wav_filename}"

        if process_audio:
            (new_sr, wav1) = self._fn(wav_filename,"Midpoint",32,0.5)
            print('Denoised')
            buffer = io.BytesIO()
            sf.write(buffer, wav1, new_sr, format='WAV')
            print(new_sr)
            buffer.seek(0)
        else:
            wav1, sr = librosa.load(wav_filename, sr=None)
            buffer = io.BytesIO()
            sf.write(buffer, wav1, sr, format='WAV')
            buffer.seek(0)

        print("uploading")
        content_type = "audio/wav"
        try:
            self.s3_client.put_object(Bucket=bucket_name, Key=wav_filename, Body=buffer, ContentType=content_type)
            print("uploaded")
        except Exception as e:
            print(f"Error uploading to S3: {e}")
            return {"error": str(e)}

        os.remove(wav_filename)
        return {"url": file_url}


    def predict(self,s3_url,passage,process_audio):
        output_dir = 'processed'
        gen_id = str(uuid.uuid4())
        os.makedirs(output_dir,exist_ok=True)
        raw_dir = os.path.join(output_dir,gen_id,'raw')
        segments_dir = os.path.join(output_dir,gen_id,'segments')
        results_dir = os.path.join(output_dir,gen_id,'results')
        openvoice_dir = os.path.join(output_dir,gen_id,'openvoice')
        os.makedirs(raw_dir)
        os.makedirs(segments_dir)
        os.makedirs(results_dir)
        
        
        s3_key = s3_url.split('/')[-1]
        bucket_name = 'demovidelyuseruploads'
        local_file_path = os.path.join(raw_dir,s3_key)
        self.download_file_from_s3(self.s3_client,bucket_name,s3_key,local_file_path)
        #voice_clone with styletts2
        model,sampler = self.model,self.sampler
        result = self.process_audio_file(local_file_path,passage,model,sampler)
        final_output = os.path.join(results_dir,f"{gen_id}-voice-clone-1.wav")

        sf.write(final_output,result,24000)
        if process_audio:
            (new_sr, wav1) = self._fn(final_output,"Midpoint",32,0.5)
            sf.write(final_output,wav1,new_sr)

        base_speaker_tts,tone_color_converter = self.base_speaker_tts,self.tone_color_converter
        reference_speaker = local_file_path
        target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir=openvoice_dir, vad=False)
        src_path = os.path.join(results_dir,f"{gen_id}-tmp.wav")
        openvoice_output = os.path.join(results_dir,f"{gen_id}-voice-clone-2.wav")
        base_speaker_tts.tts(passage,src_path,speaker='default',language='English',speed=1.0)

        source_se = torch.load(f'{self.ckpt_base}/en_default_se.pth').to(self.device)
        tone_color_converter.convert(audio_src_path=src_path,src_se=source_se,tgt_se=target_se,output_path=openvoice_output,message='')
        if process_audio:
            (new_sr, wav1) = self._fn(openvoice_output,"Midpoint",32,0.5)
            sf.write(openvoice_output,wav1,new_sr)
        
        
        mp3_final_output_1 = str(final_output).replace('wav','mp3')
        mp3_final_output_2 = str(openvoice_output).replace('wav','mp3')
        self.convert_wav_to_mp3(final_output,mp3_final_output_1)
        self.convert_wav_to_mp3(openvoice_output,mp3_final_output_2)
        print(mp3_final_output_1)
        print(mp3_final_output_2)
        
        self.upload_file_to_s3(mp3_final_output_1,'demovidelyusergenerations',f"{gen_id}-voice-clone-1.mp3")
        self.upload_file_to_s3(mp3_final_output_2,'demovidelyusergenerations',f"{gen_id}-voice-clone-2.mp3")
        shutil.rmtree(os.path.join(output_dir,gen_id))
        return {"voice_clone_1":f"https://demovidelyusergenerations.s3.amazonaws.com/{gen_id}-voice-clone-1.mp3",
                "voice_clone_2":f"https://demovidelyusergenerations.s3.amazonaws.com/{gen_id}-voice-clone-2.mp3"
                }
        if method_type == 'voice_clone_with_emotions':
            try:
                print("INSIDE emotions")        
                base_speaker_tts,tone_color_converter = self.base_speaker_tts,self.tone_color_converter
                reference_speaker = local_file_path
                print("here 1")
                target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir=openvoice_dir, vad=False)
                print("here 2")
                src_path = os.path.join(results_dir,f"{gen_id}-tmp-emotions.wav")
                openvoice_output = os.path.join(results_dir,f"{gen_id}-4.wav")
                base_speaker_tts.tts(passage,src_path,speaker='default',language='English',speed=1.0,use_emotions=True)
                source_se = torch.load(f'{self.ckpt_base}/en_style_se.pth').to(self.device)
                tone_color_converter.convert(audio_src_path=src_path,src_se=source_se,tgt_se=target_se,output_path=openvoice_output,message='')
                if process_audio:
                    (new_sr, wav1) = self._fn(openvoice_output,"Midpoint",32,0.5)
                    sf.write(openvoice_output,wav1,new_sr)
                
                mp3_final_output_1 = str(openvoice_output).replace('wav','mp3')
                self.convert_wav_to_mp3(openvoice_output,mp3_final_output_1)
                print(mp3_final_output_1)
                self.upload_file_to_s3(mp3_final_output_1,'demovidelyusergenerations',f"{gen_id}-voice-with-emotions.mp3")
                shutil.rmtree(os.path.join(output_dir,gen_id))
                return {"voice_clone_with_emotions":f"https://demovidelyusergenerations.s3.amazonaws.com/{gen_id}-voice-with-emotions.mp3"
                        }
            except Exception as e:
                return {"error":f"Unexpected error{e}"}
        if method_type == 'voice_clone_with_multi_lang':
            print("Inside multilang")
            #voice clone with multi-lingugal
            _,tone_color_converter = self.base_speaker_tts,self.tone_color_converter
            reference_speaker = local_file_path
            target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir=openvoice_dir, vad=False)
            src_path = 'openai_source_output.mp3'
            source_se, audio_name = se_extractor.get_se(src_path, tone_color_converter, vad=True)

            
            client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
            response = client.audio.speech.create(
                model="tts-1",
                voice="fable",
                input=passage
            )

            openai_multi_lang_path = os.path.join(results_dir,f"{gen_id}-openai-gen.wav")
            response.stream_to_file(openai_multi_lang_path)
            multi_lang_with_voice_clone_path = os.path.join(results_dir,f"{gen_id}-voice-clone-multi-lang.wav")

            source_se, audio_name = se_extractor.get_se(src_path, tone_color_converter, vad=True)
            self.tone_color_converter.convert(audio_src_path=openai_multi_lang_path, src_se=source_se, tgt_se=target_se, output_path=multi_lang_with_voice_clone_path,message='')

            mp3_final_output_1 = str(multi_lang_with_voice_clone_path).replace('wav','mp3')
            self.convert_wav_to_mp3(multi_lang_with_voice_clone_path,mp3_final_output_1)
            print(mp3_final_output_1)
            self.upload_file_to_s3(mp3_final_output_1,'demovidelyusergenerations',f"{gen_id}-voice-clone-multi-lang.mp3")
            shutil.rmtree(os.path.join(output_dir,gen_id))
            return {"voice_clone_with_emotions":f"https://demovidelyusergenerations.s3.amazonaws.com/{gen_id}-voice-clone-multi-lang.mp3"
            }
    


    def predict_with_emotions(self,s3_url,passage,process_audio):
        output_dir = 'processed'
        gen_id = str(uuid.uuid4())
        os.makedirs(output_dir,exist_ok=True)
        raw_dir = os.path.join(output_dir,gen_id,'raw')
        segments_dir = os.path.join(output_dir,gen_id,'segments')
        results_dir = os.path.join(output_dir,gen_id,'results')
        openvoice_dir = os.path.join(output_dir,gen_id,'openvoice')
        os.makedirs(raw_dir)
        os.makedirs(segments_dir)
        os.makedirs(results_dir)
        
        
        s3_key = s3_url.split('/')[-1]
        bucket_name = 'demovidelyuseruploads'
        local_file_path = os.path.join(raw_dir,s3_key)
        self.download_file_from_s3(self.s3_client,bucket_name,s3_key,local_file_path)       
        try:
            print("INSIDE new emotions method")        
            base_speaker_tts,tone_color_converter = self.base_speaker_tts,self.tone_color_converter
            reference_speaker = local_file_path
            print("here 1")
            target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir=openvoice_dir, vad=False)
            print("here 2")
            src_path = os.path.join(results_dir,f"{gen_id}-tmp-emotions.wav")
            openvoice_output = os.path.join(results_dir,f"{gen_id}-4.wav")
            base_speaker_tts.tts(passage,src_path,speaker='default',language='English',speed=1.0,use_emotions=True)
            source_se = torch.load(f'{self.ckpt_base}/en_style_se.pth').to(self.device)
            tone_color_converter.convert(audio_src_path=src_path,src_se=source_se,tgt_se=target_se,output_path=openvoice_output,message='')
            if process_audio:
                (new_sr, wav1) = self._fn(openvoice_output,"Midpoint",32,0.5)
                sf.write(openvoice_output,wav1,new_sr)
            
            mp3_final_output_1 = str(openvoice_output).replace('wav','mp3')
            self.convert_wav_to_mp3(openvoice_output,mp3_final_output_1)
            print(mp3_final_output_1)
            self.upload_file_to_s3(mp3_final_output_1,'demovidelyusergenerations',f"{gen_id}-voice-with-emotions.mp3")
            shutil.rmtree(os.path.join(output_dir,gen_id))
            return {"voice_clone_with_emotions":f"https://demovidelyusergenerations.s3.amazonaws.com/{gen_id}-voice-with-emotions.mp3"
                    }
        except Exception as e:
            return {"error":f"Unexpected error{e}"}

    def _fn(self,path, solver, nfe, tau):
        if path is None:
            return None, None

        solver = solver.lower()
        nfe = int(nfe)
        lambd = 0.1 # lets remove denoise

        dwav, sr = torchaudio.load(path)
        dwav = dwav.mean(dim=0)

        wav1, new_sr = enhance(dwav, sr, self.device, nfe=nfe, solver=solver, lambd=lambd, tau=tau)

        wav1 = wav1.cpu().numpy()

        return (new_sr, wav1)

    def _fn_denoise(self,path, solver, nfe, tau):
        if path is None:
            return None
        print(torch.cuda.is_available())
        print("Going to denoise")
        solver = solver.lower()
        nfe = int(nfe)
        lambd = 0.9

        dwav, sr = torchaudio.load(path)
        dwav = dwav.mean(dim=0)

        wav1, new_sr = denoise(dwav, sr, self.device)

        wav1 = wav1.cpu().numpy()
        print("Done noising")

        return (new_sr, wav1)

    def LFinference(self,model,sampler,text, s_prev, ref_s, alpha = 0.3, beta = 0.7, t = 0.7, diffusion_steps=5, embedding_scale=1):
        text = text.strip()
        ps = self.global_phonemizer.phonemize([text])
        ps = word_tokenize(ps[0])
        ps = ' '.join(ps)
        ps = ps.replace('``', '"')
        ps = ps.replace("''", '"')

        tokens = self.textclenaer(ps)
        tokens.insert(0, 0)
        tokens = torch.LongTensor(tokens).to(self.device).unsqueeze(0)
        
        with torch.no_grad():
            input_lengths = torch.LongTensor([tokens.shape[-1]]).to(self.device)
            text_mask = self.length_to_mask(input_lengths).to(self.device)

            t_en = model.text_encoder(tokens, input_lengths, text_mask)
            bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
            d_en = model.bert_encoder(bert_dur).transpose(-1, -2) 

            s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(self.device), 
                                            embedding=bert_dur,
                                            embedding_scale=embedding_scale,
                                                features=ref_s, # reference from the same speaker as the embedding
                                                num_steps=diffusion_steps).squeeze(1)
            
            if s_prev is not None:
                # convex combination of previous and current style
                s_pred = t * s_prev + (1 - t) * s_pred
            
            s = s_pred[:, 128:]
            ref = s_pred[:, :128]
            
            ref = alpha * ref + (1 - alpha)  * ref_s[:, :128]
            s = beta * s + (1 - beta)  * ref_s[:, 128:]

            s_pred = torch.cat([ref, s], dim=-1)

            d = model.predictor.text_encoder(d_en, 
                                            s, input_lengths, text_mask)

            x, _ = model.predictor.lstm(d)
            duration = model.predictor.duration_proj(x)

            duration = torch.sigmoid(duration).sum(axis=-1)
            pred_dur = torch.round(duration.squeeze()).clamp(min=1)


            pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
            c_frame = 0
            for i in range(pred_aln_trg.size(0)):
                pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
                c_frame += int(pred_dur[i].data)

            # encode prosody
            en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(self.device))
            if self.model_params.decoder.type == "hifigan":
                asr_new = torch.zeros_like(en)
                asr_new[:, :, 0] = en[:, :, 0]
                asr_new[:, :, 1:] = en[:, :, 0:-1]
                en = asr_new

            F0_pred, N_pred = model.predictor.F0Ntrain(en, s)

            asr = (t_en @ pred_aln_trg.unsqueeze(0).to(self.device))
            if self.model_params.decoder.type == "hifigan":
                asr_new = torch.zeros_like(asr)
                asr_new[:, :, 0] = asr[:, :, 0]
                asr_new[:, :, 1:] = asr[:, :, 0:-1]
                asr = asr_new

            out = model.decoder(asr, 
                                    F0_pred, N_pred, ref.squeeze().unsqueeze(0))
        
            
        return out.squeeze().cpu().numpy()[..., :-100], s_pred #

    def length_to_mask(self,lengths):
        mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
        mask = torch.gt(mask+1, lengths.unsqueeze(1))
        return mask

    def preprocess(self,wave):
        wave_tensor = torch.from_numpy(wave).float()
        mel_tensor = self.to_mel(wave_tensor)
        mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - self.mean) / self.std
        return mel_tensor

    def compute_style(self,path,model):
        wave, sr = librosa.load(path, sr=24000)
        audio, index = librosa.effects.trim(wave, top_db=30)
        if sr != 24000:
            audio = librosa.resample(audio, sr, 24000)
        mel_tensor = self.preprocess(audio).to(self.device)

        with torch.no_grad():
            ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
            ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))

        return torch.cat([ref_s, ref_p], dim=1)

    def process_audio_file(self,local_file_path,passage,model,sampler):
        print(local_file_path)
        s_ref = self.compute_style(local_file_path, model)
        sentences = split_and_recombine_text(passage)
        wavs = []
        s_prev = None
        for text in sentences:
            if text.strip() == "": continue
            text += '.'
            wav, s_prev = self.LFinference(model,sampler,text, 
                                    s_prev, 
                                    s_ref, 
                                    alpha = 0, 
                                    beta = 0.3,  
                                    t = 0.7, 
                                    diffusion_steps=10, embedding_scale=1)
            wavs.append(wav)

        audio_arrays = []
        for wav_file in wavs:
            audio_arrays.append(wav_file)
        concatenated_audio = np.concatenate(audio_arrays)
        return concatenated_audio

    def download_file_from_s3(self,s3_client,bucket_name, s3_key, local_file_path):
        try:
            s3_client.download_file(bucket_name, s3_key, local_file_path)
            print(f"File downloaded successfully: {local_file_path}")
        except Exception as e:
            print(f"Error downloading file: {e}")


    def convert_wav_to_mp3(self,wav_file, mp3_file):
        command = ['ffmpeg', '-i', wav_file, '-q:a', '0', '-map', 'a', mp3_file]
        subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)


    def upload_file_to_s3(self,file_name, bucket, object_name=None, content_type="audio/mpeg"):

        if object_name is None:
            object_name = file_name

        try:
            with open(file_name, 'rb') as file_data:
                self.s3_client.put_object(Bucket=bucket, Key=object_name, Body=file_data, ContentType=content_type)
            print("File uploaded successfully")
            return True
        except NoCredentialsError:
            print("Error: No AWS credentials found")
            return False
        except Exception as e:
            print(f"Error uploading file: {e}")
            return False