Spaces:
Runtime error
Runtime error
File size: 5,856 Bytes
e1412bc 6ee526e 5f8297f e385e48 bb029fa fc16268 e1412bc fc16268 e1412bc 5f8297f e1412bc 5f8297f e1412bc 5f8297f e1412bc fc16268 e1412bc 373c160 6ee526e 373c160 5f8297f 6ee526e bb029fa 5f8297f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
import glob
import torch
from glob import glob
import numpy as np
from pydub import AudioSegment
from faster_whisper import WhisperModel
from whisper_timestamped.transcribe import get_audio_tensor, get_vad_segments
# Run on GPU with FP16
model = None
model_size = 'medium'
def split_audio_whisper(audio_path, target_dir='processed',needs_offset=True):
print("in whisper split")
model = WhisperModel('medium', device="cuda", compute_type="float16")
print("loaded")
audio = AudioSegment.from_file(audio_path)
max_len = len(audio)
audio_name = os.path.basename(audio_path).rsplit('.', 1)[0]
target_folder = os.path.join(target_dir, audio_name)
segments, info = model.transcribe(audio_path, beam_size=5, word_timestamps=True)
segments = list(segments)
print(segments)
# create directory
os.makedirs(target_folder, exist_ok=True)
wavs_folder = os.path.join(target_folder, 'wavs')
os.makedirs(wavs_folder, exist_ok=True)
# segments
s_ind = 0
start_time = None
for k, w in enumerate(segments):
# process with the time
if k == 0:
start_time = max(0, w.start)
end_time = w.end
# calculate confidence
if len(w.words) > 0:
confidence = sum([s.probability for s in w.words]) / len(w.words)
else:
confidence = 0.
# clean text
text = w.text.replace('...', '')
# left 0.08s for each audios
audio_seg = audio[int( start_time * 1000) : min(max_len, int(end_time * 1000) + 80)]
# segment file name
fname = f"{audio_name}_seg{s_ind}.wav"
# filter out the segment shorter than 1.5s and longer than 20s
save = audio_seg.duration_seconds > 1.5 and \
audio_seg.duration_seconds < 20. and \
len(text) >= 2 and len(text) < 200
if save:
output_file = os.path.join(wavs_folder, fname)
audio_seg.export(output_file, format='wav')
offset = 0.0
if needs_offset:
offset = 0.08
if k < len(segments) - 1:
start_time = max(0, segments[k+1].start - offset)
s_ind = s_ind + 1
return wavs_folder
def split_audio_vad(audio_path, target_dir, split_seconds=10.0):
SAMPLE_RATE = 16000
audio_vad = get_audio_tensor(audio_path)
segments = get_vad_segments(
audio_vad,
output_sample=True,
min_speech_duration=0.1,
min_silence_duration=1,
method="silero",
)
segments = [(seg["start"], seg["end"]) for seg in segments]
segments = [(float(s) / SAMPLE_RATE, float(e) / SAMPLE_RATE) for s,e in segments]
print(segments)
audio_active = AudioSegment.silent(duration=0)
audio = AudioSegment.from_file(audio_path)
for start_time, end_time in segments:
audio_active += audio[int( start_time * 1000) : int(end_time * 1000)]
audio_dur = audio_active.duration_seconds
print(f'after vad: dur = {audio_dur}')
audio_name = os.path.basename(audio_path).rsplit('.', 1)[0]
target_folder = os.path.join(target_dir, audio_name)
wavs_folder = os.path.join(target_folder, 'wavs')
os.makedirs(wavs_folder, exist_ok=True)
start_time = 0.
count = 0
num_splits = int(np.round(audio_dur / split_seconds))
assert num_splits > 0, 'input audio is too short'
interval = audio_dur / num_splits
for i in range(num_splits):
end_time = min(start_time + interval, audio_dur)
if i == num_splits - 1:
end_time = audio_dur
output_file = f"{wavs_folder}/{audio_name}_seg{count}.wav"
audio_seg = audio_active[int(start_time * 1000): int(end_time * 1000)]
audio_seg.export(output_file, format='wav')
start_time = end_time
count += 1
return wavs_folder
def get_se(audio_path, vc_model, target_dir='processed', vad=True):
device = vc_model.device
audio_name = os.path.basename(audio_path).rsplit('.', 1)[0]
se_path = os.path.join(target_dir, audio_name, 'se.pth')
if os.path.isfile(se_path):
se = torch.load(se_path).to(device)
return se, audio_name
if os.path.isdir(audio_path):
wavs_folder = audio_path
elif vad:
wavs_folder = split_audio_vad(audio_path, target_dir)
else:
wavs_folder = split_audio_whisper(audio_path, target_dir)
print("Done")
audio_segs = glob(f'{wavs_folder}/*.wav')
if len(audio_segs) == 0:
raise NotImplementedError('No audio segments found!')
return vc_model.extract_se(audio_segs, se_save_path=se_path), audio_name
def generate_voice_segments(audio_path, target_dir='processed', vad=True):
audio_name = os.path.basename(audio_path).rsplit('.', 1)[0]
if vad:
wavs_folder = split_audio_vad(audio_path, target_dir)
else:
wavs_folder = split_audio_whisper(audio_path, target_dir)
audio_segs = glob(f'{wavs_folder}/*.wav')
if len(audio_segs) == 0:
raise NotImplementedError('No audio segments found!')
def load_model():
model = WhisperModel('medium', device="cpu", compute_type="int8")
def extract_segments_to_cut_audio(max_duration,audio_path,target_dir='processed'):
model = WhisperModel('medium', device="cuda", compute_type="float16")
audio = AudioSegment.from_file(audio_path)
max_len = len(audio)
segments, info = model.transcribe(audio_path, beam_size=5, word_timestamps=True)
segments = list(segments)
start_time = 0.0
end_time = max_len
for segment in segments:
print(segment.end)
if segment.end > max_duration:
end_time = segment.end * 1000
break
max_duration_audio = audio[start_time:end_time]
max_duration_audio.export(audio_path,format='wav')
|