File size: 8,354 Bytes
e1412bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# coding: utf-8
import os
import os.path as osp
import time
import random
import numpy as np
import random
import soundfile as sf
import librosa

import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from torch.utils.data import DataLoader

import logging

logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)

import pandas as pd

_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"

# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)

dicts = {}
for i in range(len((symbols))):
    dicts[symbols[i]] = i


class TextCleaner:
    def __init__(self, dummy=None):
        self.word_index_dictionary = dicts

    def __call__(self, text):
        indexes = []
        for char in text:
            try:
                indexes.append(self.word_index_dictionary[char])
            except KeyError:
                print(text)
        return indexes


np.random.seed(1)
random.seed(1)
SPECT_PARAMS = {"n_fft": 2048, "win_length": 1200, "hop_length": 300}
MEL_PARAMS = {
    "n_mels": 80,
}

to_mel = torchaudio.transforms.MelSpectrogram(
    n_mels=80, n_fft=2048, win_length=1200, hop_length=300
)
mean, std = -4, 4


def preprocess(wave):
    wave_tensor = torch.from_numpy(wave).float()
    mel_tensor = to_mel(wave_tensor)
    mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
    return mel_tensor


class FilePathDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        data_list,
        root_path,
        sr=24000,
        data_augmentation=False,
        validation=False,
        OOD_data="Data/OOD_texts.txt",
        min_length=50,
    ):
        spect_params = SPECT_PARAMS
        mel_params = MEL_PARAMS

        _data_list = [l[:-1].split("|") for l in data_list]
        self.data_list = [data if len(data) == 3 else (*data, 0) for data in _data_list]
        self.text_cleaner = TextCleaner()
        self.sr = sr

        self.df = pd.DataFrame(self.data_list)

        self.to_melspec = torchaudio.transforms.MelSpectrogram(**MEL_PARAMS)

        self.mean, self.std = -4, 4
        self.data_augmentation = data_augmentation and (not validation)
        self.max_mel_length = 192

        self.min_length = min_length
        with open(OOD_data, "r") as f:
            tl = f.readlines()
        idx = 1 if ".wav" in tl[0].split("|")[0] else 0
        self.ptexts = [t.split("|")[idx] for t in tl]

        self.root_path = root_path

    def __len__(self):
        return len(self.data_list)

    def __getitem__(self, idx):
        data = self.data_list[idx]
        path = data[0]

        wave, text_tensor, speaker_id = self._load_tensor(data)

        mel_tensor = preprocess(wave).squeeze()

        acoustic_feature = mel_tensor.squeeze()
        length_feature = acoustic_feature.size(1)
        acoustic_feature = acoustic_feature[:, : (length_feature - length_feature % 2)]

        # get reference sample
        ref_data = (self.df[self.df[2] == str(speaker_id)]).sample(n=1).iloc[0].tolist()
        ref_mel_tensor, ref_label = self._load_data(ref_data[:3])

        # get OOD text

        ps = ""

        while len(ps) < self.min_length:
            rand_idx = np.random.randint(0, len(self.ptexts) - 1)
            ps = self.ptexts[rand_idx]

            text = self.text_cleaner(ps)
            text.insert(0, 0)
            text.append(0)

            ref_text = torch.LongTensor(text)

        return (
            speaker_id,
            acoustic_feature,
            text_tensor,
            ref_text,
            ref_mel_tensor,
            ref_label,
            path,
            wave,
        )

    def _load_tensor(self, data):
        wave_path, text, speaker_id = data
        speaker_id = int(speaker_id)
        wave, sr = sf.read(osp.join(self.root_path, wave_path))
        if wave.shape[-1] == 2:
            wave = wave[:, 0].squeeze()
        if sr != 24000:
            wave = librosa.resample(wave, orig_sr=sr, target_sr=24000)
            print(wave_path, sr)

        wave = np.concatenate([np.zeros([5000]), wave, np.zeros([5000])], axis=0)

        text = self.text_cleaner(text)

        text.insert(0, 0)
        text.append(0)

        text = torch.LongTensor(text)

        return wave, text, speaker_id

    def _load_data(self, data):
        wave, text_tensor, speaker_id = self._load_tensor(data)
        mel_tensor = preprocess(wave).squeeze()

        mel_length = mel_tensor.size(1)
        if mel_length > self.max_mel_length:
            random_start = np.random.randint(0, mel_length - self.max_mel_length)
            mel_tensor = mel_tensor[
                :, random_start : random_start + self.max_mel_length
            ]

        return mel_tensor, speaker_id


class Collater(object):
    """
    Args:
      adaptive_batch_size (bool): if true, decrease batch size when long data comes.
    """

    def __init__(self, return_wave=False):
        self.text_pad_index = 0
        self.min_mel_length = 192
        self.max_mel_length = 192
        self.return_wave = return_wave

    def __call__(self, batch):
        # batch[0] = wave, mel, text, f0, speakerid
        batch_size = len(batch)

        # sort by mel length
        lengths = [b[1].shape[1] for b in batch]
        batch_indexes = np.argsort(lengths)[::-1]
        batch = [batch[bid] for bid in batch_indexes]

        nmels = batch[0][1].size(0)
        max_mel_length = max([b[1].shape[1] for b in batch])
        max_text_length = max([b[2].shape[0] for b in batch])
        max_rtext_length = max([b[3].shape[0] for b in batch])

        labels = torch.zeros((batch_size)).long()
        mels = torch.zeros((batch_size, nmels, max_mel_length)).float()
        texts = torch.zeros((batch_size, max_text_length)).long()
        ref_texts = torch.zeros((batch_size, max_rtext_length)).long()

        input_lengths = torch.zeros(batch_size).long()
        ref_lengths = torch.zeros(batch_size).long()
        output_lengths = torch.zeros(batch_size).long()
        ref_mels = torch.zeros((batch_size, nmels, self.max_mel_length)).float()
        ref_labels = torch.zeros((batch_size)).long()
        paths = ["" for _ in range(batch_size)]
        waves = [None for _ in range(batch_size)]

        for bid, (
            label,
            mel,
            text,
            ref_text,
            ref_mel,
            ref_label,
            path,
            wave,
        ) in enumerate(batch):
            mel_size = mel.size(1)
            text_size = text.size(0)
            rtext_size = ref_text.size(0)
            labels[bid] = label
            mels[bid, :, :mel_size] = mel
            texts[bid, :text_size] = text
            ref_texts[bid, :rtext_size] = ref_text
            input_lengths[bid] = text_size
            ref_lengths[bid] = rtext_size
            output_lengths[bid] = mel_size
            paths[bid] = path
            ref_mel_size = ref_mel.size(1)
            ref_mels[bid, :, :ref_mel_size] = ref_mel

            ref_labels[bid] = ref_label
            waves[bid] = wave

        return (
            waves,
            texts,
            input_lengths,
            ref_texts,
            ref_lengths,
            mels,
            output_lengths,
            ref_mels,
        )


def build_dataloader(
    path_list,
    root_path,
    validation=False,
    OOD_data="Data/OOD_texts.txt",
    min_length=50,
    batch_size=4,
    num_workers=1,
    device="cpu",
    collate_config={},
    dataset_config={},
):
    dataset = FilePathDataset(
        path_list,
        root_path,
        OOD_data=OOD_data,
        min_length=min_length,
        validation=validation,
        **dataset_config
    )
    collate_fn = Collater(**collate_config)
    data_loader = DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=(not validation),
        num_workers=num_workers,
        drop_last=(not validation),
        collate_fn=collate_fn,
        pin_memory=(device != "cpu"),
    )

    return data_loader