testspace / src /predict.py
StormblessedKal's picture
fix func
7b7efd0
raw
history blame
23.3 kB
"""
This file contains the Predictor class, which is used to run predictions on the
Whisper model. It is based on the Predictor class from the original Whisper
repository, with some modifications to make it work with the RP platform.
"""
from concurrent.futures import ThreadPoolExecutor
import numpy as np
import base64
from pydub.utils import mediainfo
import tempfile
from runpod.serverless.utils import rp_cuda
import boto3
import random
random.seed(0)
from glob import glob
import subprocess
import io
import numpy as np
np.random.seed(0)
import subprocess
import se_extractor
import yaml
from munch import Munch
import uuid
import shutil
from openai import OpenAI
import time
import os
import phonemizer
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from nltk.tokenize import word_tokenize
import nltk
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
nltk.download('punkt')
from models import *
from utils import *
import soundfile as sf
from tortoise.utils.text import split_and_recombine_text
from resemble_enhance.enhancer.inference import denoise, enhance
from text_utils import TextCleaner
from pydantic import BaseModel, HttpUrl
from api import BaseSpeakerTTS, ToneColorConverter
from pydub import AudioSegment
from urllib.parse import urlparse
class Predictor:
def __init__(self):
self.model = None
self.sampler = None
self.to_mel = None
self.global_phonemizer = None
self.model_params = None
self.textclenaer = None
self.mean = 0
self.std = 0
self.device = 'cuda'
self.ckpt_base = 'checkpoints/base_speakers/EN'
self.ckpt_converter = 'checkpoints/converter'
self.base_speaker_tts = None
self.tone_color_converter = None
self.output_dir = 'outputs'
self.processed_dir = 'processed'
os.makedirs(self.processed_dir, exist_ok=True)
os.makedirs(self.output_dir, exist_ok=True)
self.s3_client = boto3.client('s3',aws_access_key_id=os.getenv('AWS_ACCESS_KEY'), aws_secret_access_key=os.getenv('AWS_SECRET_KEY'))
print(os.getenv("AWS_ACCESS_KEY"))
print(os.getenv("AWS_SECRET_KEY"))
self.bucket_name = os.getenv('S3_BUCKET_NAME')
print(self.bucket_name)
def setup(self):
self.global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
self.textclenaer = TextCleaner()
self.to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
self.mean, self.std = -4, 4
config = yaml.safe_load(open("Configs/hg.yml"))
print(config)
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)
self.model_params = recursive_munch(config['model_params'])
self.model = build_model(self.model_params, text_aligner, pitch_extractor, plbert)
_ = [self.model[key].eval() for key in self.model]
_ = [self.model[key].to(self.device) for key in self.model]
params_whole = torch.load("Models/epochs_2nd_00020.pth", map_location='cpu')
params = params_whole['net']
for key in self.model:
if key in params:
print('%s loaded' % key)
try:
self.model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
self.model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [self.model[key].eval() for key in self.model]
self.sampler = DiffusionSampler(
self.model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
clamp=False
)
self.base_speaker_tts = BaseSpeakerTTS(f'{self.ckpt_base}/config.json', device=self.device)
self.base_speaker_tts.load_ckpt(f'{self.ckpt_base}/checkpoint.pth')
self.tone_color_converter = ToneColorConverter(f'{self.ckpt_converter}/config.json', device=self.device)
self.tone_color_converter.load_ckpt(f'{self.ckpt_converter}/checkpoint.pth')
def createvoice(self,s3_url,audio_base_64,cut_audio,process_audio):
file_bytes = None
bucket_name = self.bucket_name
if s3_url:
parsed_url = urlparse(s3_url)
s3_key = parsed_url.path.lstrip('/')
local_filename = f"{uuid.uuid4()}"
self.download_file_from_s3(self.s3_client,bucket_name, s3_key, local_filename)
with open(local_filename, 'rb') as file:
file_bytes = file.read()
os.remove(local_filename)
elif audio_base_64:
file_bytes = base64.b64decode(audio_base_64)
else:
raise ValueError("Either s3_url or audio_base_64 must be provided.")
file_buffer = io.BytesIO(file_bytes)
header = file_buffer.read(12)
print(header)
file_format = 'mp3' # Default format
if b'WAVE' in header:
file_format = 'wav'
elif b'OggS' in header:
file_format = 'ogg'
unique_filename = f"{uuid.uuid4()}"
local_filename = f"{unique_filename}.{file_format}"
with open(local_filename, 'wb') as file_out:
file_out.write(file_bytes)
wav_filename = local_filename
if file_format != "wav":
wav_filename = f"{unique_filename}.wav"
subprocess.run(["ffmpeg", "-i", local_filename, wav_filename])
os.remove(local_filename)
print(wav_filename)
model,sampler = self.model,self.sampler
result = self.process_audio_file(wav_filename,'this is a sample test to quickly run this model and resample',model,sampler)
# if cut_audio > 0, means it was set
if cut_audio > 0:
#need to cut
se_extractor.extract_segments_to_cut_audio(cut_audio,wav_filename)
file_url = f"https://{bucket_name}.s3.amazonaws.com/{wav_filename}"
if process_audio:
(new_sr, wav1) = self._fn(wav_filename,"Midpoint",32,0.5)
print('Denoised')
buffer = io.BytesIO()
sf.write(buffer, wav1, new_sr, format='WAV')
print(new_sr)
buffer.seek(0)
else:
wav1, sr = librosa.load(wav_filename, sr=None)
buffer = io.BytesIO()
sf.write(buffer, wav1, sr, format='WAV')
buffer.seek(0)
print("uploading")
content_type = "audio/wav"
try:
self.s3_client.put_object(Bucket=bucket_name, Key=wav_filename, Body=buffer, ContentType=content_type)
print("uploaded")
except Exception as e:
print(f"Error uploading to S3: {e}")
return {"error": str(e)}
os.remove(wav_filename)
return {"url": file_url}
def predict(self,s3_url,passage,process_audio,output_extension,run_type='styletts2'):
output_dir = 'processed'
gen_id = str(uuid.uuid4())
os.makedirs(output_dir,exist_ok=True)
raw_dir = os.path.join(output_dir,gen_id,'raw')
segments_dir = os.path.join(output_dir,gen_id,'segments')
results_dir = os.path.join(output_dir,gen_id,'results')
openvoice_dir = os.path.join(output_dir,gen_id,'openvoice')
os.makedirs(raw_dir)
os.makedirs(segments_dir)
os.makedirs(results_dir)
s3_key = s3_url.split('/')[-1]
bucket_name = self.bucket_name
local_file_path = os.path.join(raw_dir,s3_key)
self.download_file_from_s3(self.s3_client,bucket_name,s3_key,local_file_path)
#voice_clone with styletts2
if run_type == 'styletts2':
model,sampler = self.model,self.sampler
result = self.process_audio_file(local_file_path,passage,model,sampler)
generated_output = os.path.join(results_dir,f"{gen_id}-voice-clone-1.wav")
sf.write(generated_output,result,24000)
if process_audio:
(new_sr, wav1) = self._fn(generated_output,"Midpoint",32,0.5)
sf.write(generated_output,wav1,new_sr)
final_output = str(generated_output).replace('wav',output_extension)
self.convert_wav_to_output_extension(generated_output,final_output)
if run_type == 'openvoice':
s_ref = self.compute_style(local_file_path, self.model)
base_speaker_tts,tone_color_converter = self.base_speaker_tts,self.tone_color_converter
reference_speaker = local_file_path
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir=openvoice_dir, vad=False)
src_path = os.path.join(results_dir,f"{gen_id}-tmp.wav")
openvoice_output = os.path.join(results_dir,f"{gen_id}-voice-clone-2.wav")
base_speaker_tts.tts(passage,src_path,speaker='default',language='English',speed=1.0)
source_se = torch.load(f'{self.ckpt_base}/en_default_se.pth').to(self.device)
tone_color_converter.convert(audio_src_path=src_path,src_se=source_se,tgt_se=target_se,output_path=openvoice_output,message='')
if process_audio:
(new_sr, wav1) = self._fn(openvoice_output,"Midpoint",32,0.5)
sf.write(openvoice_output,wav1,new_sr)
final_output = str(openvoice_output).replace('wav',output_extension)
self.convert_wav_to_output_extension(openvoice_output,final_output)
self.upload_file_to_s3(final_output,bucket_name,f"{gen_id}-voice-clone.{output_extension}")
shutil.rmtree(os.path.join(output_dir,gen_id))
return {"voice_clone":f"https://{bucket_name}.s3.amazonaws.com/{gen_id}-voice-clone.{output_extension}"
}
def predict_with_emotions(self,s3_url,passage,process_audio,output_extension):
output_dir = 'processed'
gen_id = str(uuid.uuid4())
os.makedirs(output_dir,exist_ok=True)
raw_dir = os.path.join(output_dir,gen_id,'raw')
segments_dir = os.path.join(output_dir,gen_id,'segments')
results_dir = os.path.join(output_dir,gen_id,'results')
openvoice_dir = os.path.join(output_dir,gen_id,'openvoice')
os.makedirs(raw_dir)
os.makedirs(segments_dir)
os.makedirs(results_dir)
s3_key = s3_url.split('/')[-1]
bucket_name = self.bucket_name
local_file_path = os.path.join(raw_dir,s3_key)
self.download_file_from_s3(self.s3_client,bucket_name,s3_key,local_file_path)
#voice_clone with styletts2
model,sampler = self.model,self.sampler
result = self.process_audio_file(local_file_path,passage,model,sampler)
base_speaker_tts,tone_color_converter = self.base_speaker_tts,self.tone_color_converter
reference_speaker = local_file_path
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir=openvoice_dir, vad=False)
src_path = os.path.join(results_dir,f"{gen_id}-tmp.wav")
openvoice_output = os.path.join(results_dir,f"{gen_id}-voice-clone-emotions.wav")
print("extracting emotions from openai")
base_speaker_tts.tts(passage,src_path,speaker='default',language='English',speed=1.0,use_emotions=True)
source_se, audio_name = se_extractor.get_se(src_path, tone_color_converter, target_dir=openvoice_dir, vad=False)
tone_color_converter.convert(audio_src_path=src_path,src_se=source_se,tgt_se=target_se,output_path=openvoice_output,message='')
if process_audio:
(new_sr, wav1) = self._fn(openvoice_output,"Midpoint",32,0.5)
sf.write(openvoice_output,wav1,new_sr)
final_ouput = str(openvoice_output).replace('wav',output_extension)
self.convert_wav_to_output_extension(openvoice_output,final_ouput)
self.upload_file_to_s3(final_ouput,bucket_name,f"{gen_id}-voice-clone-emotions.{output_extension}")
shutil.rmtree(os.path.join(output_dir,gen_id))
return {"voice_clone_emotions":f"https://{bucket_name}.s3.amazonaws.com/{gen_id}-voice-clone-emotions.{output_extension}",
}
def predict_with_multi_lang(self,s3_url,passage,process_audio,output_extension):
print("In multi lang voice cloning")
output_dir = 'processed'
gen_id = str(uuid.uuid4())
os.makedirs(output_dir,exist_ok=True)
raw_dir = os.path.join(output_dir,gen_id,'raw')
segments_dir = os.path.join(output_dir,gen_id,'segments')
results_dir = os.path.join(output_dir,gen_id,'results')
openvoice_dir = os.path.join(output_dir,gen_id,'openvoice')
os.makedirs(raw_dir)
os.makedirs(segments_dir)
os.makedirs(results_dir)
s3_key = s3_url.split('/')[-1]
bucket_name = self.bucket_name
local_file_path = os.path.join(raw_dir,s3_key)
self.download_file_from_s3(self.s3_client,bucket_name,s3_key,local_file_path)
model,sampler = self.model,self.sampler
result = self.process_audio_file(local_file_path,'this is a sample test to quickly run this model and resample',model,sampler)
_,tone_color_converter = self.base_speaker_tts,self.tone_color_converter
reference_speaker = local_file_path
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir=openvoice_dir, vad=False)
src_path = 'openai_source_output.mp3'
source_se, audio_name = se_extractor.get_se(src_path, tone_color_converter, vad=True)
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
response = client.audio.speech.create(
model="tts-1",
voice="fable",
input=passage
)
openai_multi_lang_path = os.path.join(results_dir,f"{gen_id}-openai-gen.wav")
response.stream_to_file(openai_multi_lang_path)
multi_lang_with_voice_clone_path = os.path.join(results_dir,f"{gen_id}-voice-clone-multi-lang.wav")
source_se, audio_name = se_extractor.get_se(src_path, tone_color_converter, vad=True)
self.tone_color_converter.convert(audio_src_path=openai_multi_lang_path, src_se=source_se, tgt_se=target_se, output_path=multi_lang_with_voice_clone_path,message='')
final_output = str(multi_lang_with_voice_clone_path).replace('wav',output_extension)
self.convert_wav_to_output_extension(multi_lang_with_voice_clone_path,final_output)
print(final_output)
self.upload_file_to_s3(final_output,bucket_name,f"{gen_id}-voice-clone-multi-lang.{output_extension}")
shutil.rmtree(os.path.join(output_dir,gen_id))
return {"voice_clone_with_multi_lang":f"https://{bucket_name}.s3.amazonaws.com/{gen_id}-voice-clone-multi-lang.{output_extension}"
}
def _fn(self,path, solver, nfe, tau):
if path is None:
return None, None
solver = solver.lower()
nfe = int(nfe)
lambd = 0.1 # lets remove denoise
dwav, sr = torchaudio.load(path)
dwav = dwav.mean(dim=0)
wav1, new_sr = enhance(dwav, sr, self.device, nfe=nfe, solver=solver, lambd=lambd, tau=tau)
wav1 = wav1.cpu().numpy()
return (new_sr, wav1)
def _fn_denoise(self,path, solver, nfe, tau):
if path is None:
return None
print(torch.cuda.is_available())
print("Going to denoise")
solver = solver.lower()
nfe = int(nfe)
lambd = 0.9
dwav, sr = torchaudio.load(path)
dwav = dwav.mean(dim=0)
wav1, new_sr = denoise(dwav, sr, self.device)
wav1 = wav1.cpu().numpy()
print("Done noising")
return (new_sr, wav1)
def LFinference(self,model,sampler,text, s_prev, ref_s, alpha = 0.3, beta = 0.7, t = 0.7, diffusion_steps=5, embedding_scale=1):
text = text.strip()
ps = self.global_phonemizer.phonemize([text])
ps = word_tokenize(ps[0])
ps = ' '.join(ps)
ps = ps.replace('``', '"')
ps = ps.replace("''", '"')
tokens = self.textclenaer(ps)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(self.device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(self.device)
text_mask = self.length_to_mask(input_lengths).to(self.device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(self.device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
if s_prev is not None:
# convex combination of previous and current style
s_pred = t * s_prev + (1 - t) * s_pred
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
s_pred = torch.cat([ref, s], dim=-1)
d = model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(self.device))
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return out.squeeze().cpu().numpy()[..., :-100], s_pred #
def length_to_mask(self,lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def preprocess(self,wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = self.to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - self.mean) / self.std
return mel_tensor
def compute_style(self,path,model):
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = self.preprocess(audio).to(self.device)
with torch.no_grad():
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
def process_audio_file(self,local_file_path,passage,model,sampler):
print(local_file_path)
s_ref = self.compute_style(local_file_path, model)
sentences = split_and_recombine_text(passage)
wavs = []
s_prev = None
for text in sentences:
if text.strip() == "": continue
text += '.'
wav, s_prev = self.LFinference(model,sampler,text,
s_prev,
s_ref,
alpha = 0,
beta = 0.3,
t = 0.7,
diffusion_steps=10, embedding_scale=1)
wavs.append(wav)
audio_arrays = []
for wav_file in wavs:
audio_arrays.append(wav_file)
concatenated_audio = np.concatenate(audio_arrays)
return concatenated_audio
def download_file_from_s3(self,s3_client,bucket_name, s3_key, local_file_path):
try:
s3_client.download_file(bucket_name, s3_key, local_file_path)
print(f"File downloaded successfully: {local_file_path}")
except Exception as e:
print(f"Error downloading file: {e}")
def convert_wav_to_output_extension(self,wav_file, output_file):
command = ['ffmpeg', '-i', wav_file, '-q:a', '0', '-map', 'a', output_file]
subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
def upload_file_to_s3(self,file_name, bucket, object_name=None, content_type="audio/mpeg"):
if object_name is None:
object_name = file_name
try:
with open(file_name, 'rb') as file_data:
self.s3_client.put_object(Bucket=bucket, Key=object_name, Body=file_data, ContentType=content_type)
print("File uploaded successfully")
return True
except NoCredentialsError:
print("Error: No AWS credentials found")
return False
except Exception as e:
print(f"Error uploading file: {e}")
return False