testspace / src /Modules /istftnet.py
StormblessedKal's picture
docker for runpod
e1412bc
raw
history blame
24.6 kB
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from .utils import init_weights, get_padding
import math
import random
import numpy as np
from scipy.signal import get_window
LRELU_SLOPE = 0.1
class AdaIN1d(nn.Module):
def __init__(self, style_dim, num_features):
super().__init__()
self.norm = nn.InstanceNorm1d(num_features, affine=False)
self.fc = nn.Linear(style_dim, num_features * 2)
def forward(self, x, s):
h = self.fc(s)
h = h.view(h.size(0), h.size(1), 1)
gamma, beta = torch.chunk(h, chunks=2, dim=1)
return (1 + gamma) * self.norm(x) + beta
class AdaINResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
super(AdaINResBlock1, self).__init__()
self.convs1 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
]
)
self.convs2.apply(init_weights)
self.adain1 = nn.ModuleList(
[
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
]
)
self.adain2 = nn.ModuleList(
[
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
AdaIN1d(style_dim, channels),
]
)
self.alpha1 = nn.ParameterList(
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))]
)
self.alpha2 = nn.ParameterList(
[nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))]
)
def forward(self, x, s):
for c1, c2, n1, n2, a1, a2 in zip(
self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2
):
xt = n1(x, s)
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
xt = c1(xt)
xt = n2(xt, s)
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class TorchSTFT(torch.nn.Module):
def __init__(
self, filter_length=800, hop_length=200, win_length=800, window="hann"
):
super().__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.window = torch.from_numpy(
get_window(window, win_length, fftbins=True).astype(np.float32)
)
def transform(self, input_data):
forward_transform = torch.stft(
input_data,
self.filter_length,
self.hop_length,
self.win_length,
window=self.window.to(input_data.device),
return_complex=True,
)
return torch.abs(forward_transform), torch.angle(forward_transform)
def inverse(self, magnitude, phase):
inverse_transform = torch.istft(
magnitude * torch.exp(phase * 1j),
self.filter_length,
self.hop_length,
self.win_length,
window=self.window.to(magnitude.device),
)
return inverse_transform.unsqueeze(
-2
) # unsqueeze to stay consistent with conv_transpose1d implementation
def forward(self, input_data):
self.magnitude, self.phase = self.transform(input_data)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction
class SineGen(torch.nn.Module):
"""Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(
self,
samp_rate,
upsample_scale,
harmonic_num=0,
sine_amp=0.1,
noise_std=0.003,
voiced_threshold=0,
flag_for_pulse=False,
):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
self.upsample_scale = upsample_scale
def _f02uv(self, f0):
# generate uv signal
uv = (f0 > self.voiced_threshold).type(torch.float32)
return uv
def _f02sine(self, f0_values):
"""f0_values: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
# convert to F0 in rad. The interger part n can be ignored
# because 2 * np.pi * n doesn't affect phase
rad_values = (f0_values / self.sampling_rate) % 1
# initial phase noise (no noise for fundamental component)
rand_ini = torch.rand(
f0_values.shape[0], f0_values.shape[2], device=f0_values.device
)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
if not self.flag_for_pulse:
# # for normal case
# # To prevent torch.cumsum numerical overflow,
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
# # Buffer tmp_over_one_idx indicates the time step to add -1.
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
# cumsum_shift = torch.zeros_like(rad_values)
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
rad_values = torch.nn.functional.interpolate(
rad_values.transpose(1, 2),
scale_factor=1 / self.upsample_scale,
mode="linear",
).transpose(1, 2)
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
# cumsum_shift = torch.zeros_like(rad_values)
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
phase = torch.nn.functional.interpolate(
phase.transpose(1, 2) * self.upsample_scale,
scale_factor=self.upsample_scale,
mode="linear",
).transpose(1, 2)
sines = torch.sin(phase)
else:
# If necessary, make sure that the first time step of every
# voiced segments is sin(pi) or cos(0)
# This is used for pulse-train generation
# identify the last time step in unvoiced segments
uv = self._f02uv(f0_values)
uv_1 = torch.roll(uv, shifts=-1, dims=1)
uv_1[:, -1, :] = 1
u_loc = (uv < 1) * (uv_1 > 0)
# get the instantanouse phase
tmp_cumsum = torch.cumsum(rad_values, dim=1)
# different batch needs to be processed differently
for idx in range(f0_values.shape[0]):
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
# stores the accumulation of i.phase within
# each voiced segments
tmp_cumsum[idx, :, :] = 0
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
# rad_values - tmp_cumsum: remove the accumulation of i.phase
# within the previous voiced segment.
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
# get the sines
sines = torch.cos(i_phase * 2 * np.pi)
return sines
def forward(self, f0):
"""sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
# fundamental component
fn = torch.multiply(
f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device)
)
# generate sine waveforms
sine_waves = self._f02sine(fn) * self.sine_amp
# generate uv signal
# uv = torch.ones(f0.shape)
# uv = uv * (f0 > self.voiced_threshold)
uv = self._f02uv(f0)
# noise: for unvoiced should be similar to sine_amp
# std = self.sine_amp/3 -> max value ~ self.sine_amp
# . for voiced regions is self.noise_std
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
# first: set the unvoiced part to 0 by uv
# then: additive noise
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
"""SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(
self,
sampling_rate,
upsample_scale,
harmonic_num=0,
sine_amp=0.1,
add_noise_std=0.003,
voiced_threshod=0,
):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGen(
sampling_rate,
upsample_scale,
harmonic_num,
sine_amp,
add_noise_std,
voiced_threshod,
)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
"""
# source for harmonic branch
with torch.no_grad():
sine_wavs, uv, _ = self.l_sin_gen(x)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.sine_amp / 3
return sine_merge, noise, uv
def padDiff(x):
return F.pad(
F.pad(x, (0, 0, -1, 1), "constant", 0) - x, (0, 0, 0, -1), "constant", 0
)
class Generator(torch.nn.Module):
def __init__(
self,
style_dim,
resblock_kernel_sizes,
upsample_rates,
upsample_initial_channel,
resblock_dilation_sizes,
upsample_kernel_sizes,
gen_istft_n_fft,
gen_istft_hop_size,
):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
resblock = AdaINResBlock1
self.m_source = SourceModuleHnNSF(
sampling_rate=24000,
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
harmonic_num=8,
voiced_threshod=10,
)
self.f0_upsamp = torch.nn.Upsample(
scale_factor=np.prod(upsample_rates) * gen_istft_hop_size
)
self.noise_convs = nn.ModuleList()
self.noise_res = nn.ModuleList()
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm(
ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(resblock_kernel_sizes, resblock_dilation_sizes)
):
self.resblocks.append(resblock(ch, k, d, style_dim))
c_cur = upsample_initial_channel // (2 ** (i + 1))
if i + 1 < len(upsample_rates): #
stride_f0 = np.prod(upsample_rates[i + 1 :])
self.noise_convs.append(
Conv1d(
gen_istft_n_fft + 2,
c_cur,
kernel_size=stride_f0 * 2,
stride=stride_f0,
padding=(stride_f0 + 1) // 2,
)
)
self.noise_res.append(resblock(c_cur, 7, [1, 3, 5], style_dim))
else:
self.noise_convs.append(
Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1)
)
self.noise_res.append(resblock(c_cur, 11, [1, 3, 5], style_dim))
self.post_n_fft = gen_istft_n_fft
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
self.stft = TorchSTFT(
filter_length=gen_istft_n_fft,
hop_length=gen_istft_hop_size,
win_length=gen_istft_n_fft,
)
def forward(self, x, s, f0):
with torch.no_grad():
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
har_source, noi_source, uv = self.m_source(f0)
har_source = har_source.transpose(1, 2).squeeze(1)
har_spec, har_phase = self.stft.transform(har_source)
har = torch.cat([har_spec, har_phase], dim=1)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x_source = self.noise_convs[i](har)
x_source = self.noise_res[i](x_source, s)
x = self.ups[i](x)
if i == self.num_upsamples - 1:
x = self.reflection_pad(x)
x = x + x_source
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x, s)
else:
xs += self.resblocks[i * self.num_kernels + j](x, s)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
spec = torch.exp(x[:, : self.post_n_fft // 2 + 1, :])
phase = torch.sin(x[:, self.post_n_fft // 2 + 1 :, :])
return self.stft.inverse(spec, phase)
def fw_phase(self, x, s):
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x, s)
else:
xs += self.resblocks[i * self.num_kernels + j](x, s)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.reflection_pad(x)
x = self.conv_post(x)
spec = torch.exp(x[:, : self.post_n_fft // 2 + 1, :])
phase = torch.sin(x[:, self.post_n_fft // 2 + 1 :, :])
return spec, phase
def remove_weight_norm(self):
print("Removing weight norm...")
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class AdainResBlk1d(nn.Module):
def __init__(
self,
dim_in,
dim_out,
style_dim=64,
actv=nn.LeakyReLU(0.2),
upsample="none",
dropout_p=0.0,
):
super().__init__()
self.actv = actv
self.upsample_type = upsample
self.upsample = UpSample1d(upsample)
self.learned_sc = dim_in != dim_out
self._build_weights(dim_in, dim_out, style_dim)
self.dropout = nn.Dropout(dropout_p)
if upsample == "none":
self.pool = nn.Identity()
else:
self.pool = weight_norm(
nn.ConvTranspose1d(
dim_in,
dim_in,
kernel_size=3,
stride=2,
groups=dim_in,
padding=1,
output_padding=1,
)
)
def _build_weights(self, dim_in, dim_out, style_dim):
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
self.norm1 = AdaIN1d(style_dim, dim_in)
self.norm2 = AdaIN1d(style_dim, dim_out)
if self.learned_sc:
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
def _shortcut(self, x):
x = self.upsample(x)
if self.learned_sc:
x = self.conv1x1(x)
return x
def _residual(self, x, s):
x = self.norm1(x, s)
x = self.actv(x)
x = self.pool(x)
x = self.conv1(self.dropout(x))
x = self.norm2(x, s)
x = self.actv(x)
x = self.conv2(self.dropout(x))
return x
def forward(self, x, s):
out = self._residual(x, s)
out = (out + self._shortcut(x)) / math.sqrt(2)
return out
class UpSample1d(nn.Module):
def __init__(self, layer_type):
super().__init__()
self.layer_type = layer_type
def forward(self, x):
if self.layer_type == "none":
return x
else:
return F.interpolate(x, scale_factor=2, mode="nearest")
class Decoder(nn.Module):
def __init__(
self,
dim_in=512,
F0_channel=512,
style_dim=64,
dim_out=80,
resblock_kernel_sizes=[3, 7, 11],
upsample_rates=[10, 6],
upsample_initial_channel=512,
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_kernel_sizes=[20, 12],
gen_istft_n_fft=20,
gen_istft_hop_size=5,
):
super().__init__()
self.decode = nn.ModuleList()
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
self.F0_conv = weight_norm(
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)
)
self.N_conv = weight_norm(
nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1)
)
self.asr_res = nn.Sequential(
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
)
self.generator = Generator(
style_dim,
resblock_kernel_sizes,
upsample_rates,
upsample_initial_channel,
resblock_dilation_sizes,
upsample_kernel_sizes,
gen_istft_n_fft,
gen_istft_hop_size,
)
def forward(self, asr, F0_curve, N, s):
if self.training:
downlist = [0, 3, 7]
F0_down = downlist[random.randint(0, 2)]
downlist = [0, 3, 7, 15]
N_down = downlist[random.randint(0, 3)]
if F0_down:
F0_curve = (
nn.functional.conv1d(
F0_curve.unsqueeze(1),
torch.ones(1, 1, F0_down).to("cuda"),
padding=F0_down // 2,
).squeeze(1)
/ F0_down
)
if N_down:
N = (
nn.functional.conv1d(
N.unsqueeze(1),
torch.ones(1, 1, N_down).to("cuda"),
padding=N_down // 2,
).squeeze(1)
/ N_down
)
F0 = self.F0_conv(F0_curve.unsqueeze(1))
N = self.N_conv(N.unsqueeze(1))
x = torch.cat([asr, F0, N], axis=1)
x = self.encode(x, s)
asr_res = self.asr_res(asr)
res = True
for block in self.decode:
if res:
x = torch.cat([x, asr_res, F0, N], axis=1)
x = block(x, s)
if block.upsample_type != "none":
res = False
x = self.generator(x, s, F0_curve)
return x