testspace / src /Modules /slmadv.py
StormblessedKal's picture
docker for runpod
e1412bc
raw
history blame
8.49 kB
import torch
import numpy as np
import torch.nn.functional as F
class SLMAdversarialLoss(torch.nn.Module):
def __init__(
self,
model,
wl,
sampler,
min_len,
max_len,
batch_percentage=0.5,
skip_update=10,
sig=1.5,
):
super(SLMAdversarialLoss, self).__init__()
self.model = model
self.wl = wl
self.sampler = sampler
self.min_len = min_len
self.max_len = max_len
self.batch_percentage = batch_percentage
self.sig = sig
self.skip_update = skip_update
def forward(
self,
iters,
y_rec_gt,
y_rec_gt_pred,
waves,
mel_input_length,
ref_text,
ref_lengths,
use_ind,
s_trg,
ref_s=None,
):
text_mask = length_to_mask(ref_lengths).to(ref_text.device)
bert_dur = self.model.bert(ref_text, attention_mask=(~text_mask).int())
d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
if use_ind and np.random.rand() < 0.5:
s_preds = s_trg
else:
num_steps = np.random.randint(3, 5)
if ref_s is not None:
s_preds = self.sampler(
noise=torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
embedding=bert_dur,
embedding_scale=1,
features=ref_s, # reference from the same speaker as the embedding
embedding_mask_proba=0.1,
num_steps=num_steps,
).squeeze(1)
else:
s_preds = self.sampler(
noise=torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
embedding=bert_dur,
embedding_scale=1,
embedding_mask_proba=0.1,
num_steps=num_steps,
).squeeze(1)
s_dur = s_preds[:, 128:]
s = s_preds[:, :128]
d, _ = self.model.predictor(
d_en,
s_dur,
ref_lengths,
torch.randn(ref_lengths.shape[0], ref_lengths.max(), 2).to(ref_text.device),
text_mask,
)
bib = 0
output_lengths = []
attn_preds = []
# differentiable duration modeling
for _s2s_pred, _text_length in zip(d, ref_lengths):
_s2s_pred_org = _s2s_pred[:_text_length, :]
_s2s_pred = torch.sigmoid(_s2s_pred_org)
_dur_pred = _s2s_pred.sum(axis=-1)
l = int(torch.round(_s2s_pred.sum()).item())
t = torch.arange(0, l).expand(l)
t = (
torch.arange(0, l)
.unsqueeze(0)
.expand((len(_s2s_pred), l))
.to(ref_text.device)
)
loc = torch.cumsum(_dur_pred, dim=0) - _dur_pred / 2
h = torch.exp(
-0.5 * torch.square(t - (l - loc.unsqueeze(-1))) / (self.sig) ** 2
)
out = torch.nn.functional.conv1d(
_s2s_pred_org.unsqueeze(0),
h.unsqueeze(1),
padding=h.shape[-1] - 1,
groups=int(_text_length),
)[..., :l]
attn_preds.append(F.softmax(out.squeeze(), dim=0))
output_lengths.append(l)
max_len = max(output_lengths)
with torch.no_grad():
t_en = self.model.text_encoder(ref_text, ref_lengths, text_mask)
s2s_attn = torch.zeros(len(ref_lengths), int(ref_lengths.max()), max_len).to(
ref_text.device
)
for bib in range(len(output_lengths)):
s2s_attn[bib, : ref_lengths[bib], : output_lengths[bib]] = attn_preds[bib]
asr_pred = t_en @ s2s_attn
_, p_pred = self.model.predictor(d_en, s_dur, ref_lengths, s2s_attn, text_mask)
mel_len = max(int(min(output_lengths) / 2 - 1), self.min_len // 2)
mel_len = min(mel_len, self.max_len // 2)
# get clips
en = []
p_en = []
sp = []
F0_fakes = []
N_fakes = []
wav = []
for bib in range(len(output_lengths)):
mel_length_pred = output_lengths[bib]
mel_length_gt = int(mel_input_length[bib].item() / 2)
if mel_length_gt <= mel_len or mel_length_pred <= mel_len:
continue
sp.append(s_preds[bib])
random_start = np.random.randint(0, mel_length_pred - mel_len)
en.append(asr_pred[bib, :, random_start : random_start + mel_len])
p_en.append(p_pred[bib, :, random_start : random_start + mel_len])
# get ground truth clips
random_start = np.random.randint(0, mel_length_gt - mel_len)
y = waves[bib][
(random_start * 2) * 300 : ((random_start + mel_len) * 2) * 300
]
wav.append(torch.from_numpy(y).to(ref_text.device))
if len(wav) >= self.batch_percentage * len(
waves
): # prevent OOM due to longer lengths
break
if len(sp) <= 1:
return None
sp = torch.stack(sp)
wav = torch.stack(wav).float()
en = torch.stack(en)
p_en = torch.stack(p_en)
F0_fake, N_fake = self.model.predictor.F0Ntrain(p_en, sp[:, 128:])
y_pred = self.model.decoder(en, F0_fake, N_fake, sp[:, :128])
# discriminator loss
if (iters + 1) % self.skip_update == 0:
if np.random.randint(0, 2) == 0:
wav = y_rec_gt_pred
use_rec = True
else:
use_rec = False
crop_size = min(wav.size(-1), y_pred.size(-1))
if (
use_rec
): # use reconstructed (shorter lengths), do length invariant regularization
if wav.size(-1) > y_pred.size(-1):
real_GP = wav[:, :, :crop_size]
out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
out_org = self.wl.discriminator_forward(wav.detach().squeeze())
loss_reg = F.l1_loss(out_crop, out_org[..., : out_crop.size(-1)])
if np.random.randint(0, 2) == 0:
d_loss = self.wl.discriminator(
real_GP.detach().squeeze(), y_pred.detach().squeeze()
).mean()
else:
d_loss = self.wl.discriminator(
wav.detach().squeeze(), y_pred.detach().squeeze()
).mean()
else:
real_GP = y_pred[:, :, :crop_size]
out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
out_org = self.wl.discriminator_forward(y_pred.detach().squeeze())
loss_reg = F.l1_loss(out_crop, out_org[..., : out_crop.size(-1)])
if np.random.randint(0, 2) == 0:
d_loss = self.wl.discriminator(
wav.detach().squeeze(), real_GP.detach().squeeze()
).mean()
else:
d_loss = self.wl.discriminator(
wav.detach().squeeze(), y_pred.detach().squeeze()
).mean()
# regularization (ignore length variation)
d_loss += loss_reg
out_gt = self.wl.discriminator_forward(y_rec_gt.detach().squeeze())
out_rec = self.wl.discriminator_forward(
y_rec_gt_pred.detach().squeeze()
)
# regularization (ignore reconstruction artifacts)
d_loss += F.l1_loss(out_gt, out_rec)
else:
d_loss = self.wl.discriminator(
wav.detach().squeeze(), y_pred.detach().squeeze()
).mean()
else:
d_loss = 0
# generator loss
gen_loss = self.wl.generator(y_pred.squeeze())
gen_loss = gen_loss.mean()
return d_loss, gen_loss, y_pred.detach().cpu().numpy()
def length_to_mask(lengths):
mask = (
torch.arange(lengths.max())
.unsqueeze(0)
.expand(lengths.shape[0], -1)
.type_as(lengths)
)
mask = torch.gt(mask + 1, lengths.unsqueeze(1))
return mask