testspace / src /api.py
StormblessedKal's picture
docker for runpod
e1412bc
raw
history blame
8.81 kB
import torch
import numpy as np
import re
import soundfile
import utils
import commons
import os
import librosa
from text import text_to_sequence
from mel_processing import spectrogram_torch
from models import SynthesizerTrn
from openai import OpenAI
class OpenVoiceBaseClass(object):
def __init__(self,
config_path,
device='cuda:0'):
if 'cuda' in device:
assert torch.cuda.is_available()
hps = utils.get_hparams_from_file(config_path)
model = SynthesizerTrn(
len(getattr(hps, 'symbols', [])),
hps.data.filter_length // 2 + 1,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
model.eval()
self.model = model
self.hps = hps
self.device = device
def load_ckpt(self, ckpt_path):
checkpoint_dict = torch.load(ckpt_path)
a, b = self.model.load_state_dict(checkpoint_dict['model'], strict=False)
print("Loaded checkpoint '{}'".format(ckpt_path))
print('missing/unexpected keys:', a, b)
class BaseSpeakerTTS(OpenVoiceBaseClass):
language_marks = {
"english": "EN",
"chinese": "ZH",
}
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
@staticmethod
def get_text(text, hps, is_symbol):
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
@staticmethod
def audio_numpy_concat(segment_data_list, sr, speed=1.):
audio_segments = []
for segment_data in segment_data_list:
audio_segments += segment_data.reshape(-1).tolist()
audio_segments += [0] * int((sr * 0.05)/speed)
audio_segments = np.array(audio_segments).astype(np.float32)
return audio_segments
@staticmethod
def split_sentences_into_pieces(text, language_str):
texts = utils.split_sentence(text, language_str=language_str)
print(" > Text splitted to sentences.")
print('\n'.join(texts))
print(" > ===========================")
return texts
def tts(self, text, output_path, speaker, language='English', speed=1.0,use_emotions=False):
mark = self.language_marks.get(language.lower(), None)
assert mark is not None, f"language {language} is not supported"
texts = self.split_sentences_into_pieces(text, mark)
audio_list = []
for t in texts:
speaker_id = self.hps.speakers[speaker]
try:
if(use_emotions):
print(f"finding emotion for {t}")
response = self.client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an expert in identifying the emotion of a sentence. Use noemotion if no emotions. Possible answers are noemotion,friendly,cheerful,excited,sad,angry,terrified,shouting,whispering.Just reply 1 word"},
{"role": "user", "content": t},
]
)
result = response.choices[0].message.content
print(result)
if result not in ["friendly", "cheerful", "excited", "sad", "angry", "terrified", "shouting", "whispering"]:
result = 'default'
print(f"CHOSEN {result}")
speaker_id = self.hps.speakers[result]
except Exception as e:
print(f"Exception {e}")
speaker_id = self.hps.speakers['default']
t = re.sub(r'([a-z])([A-Z])', r'\1 \2', t)
t = f'[{mark}]{t}[{mark}]'
stn_tst = self.get_text(t, self.hps, False)
device = self.device
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0).to(device)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
sid = torch.LongTensor([speaker_id]).to(device)
audio = self.model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.6,
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
audio_list.append(audio)
audio = self.audio_numpy_concat(audio_list, sr=self.hps.data.sampling_rate, speed=speed)
if output_path is None:
return audio
else:
soundfile.write(output_path, audio, self.hps.data.sampling_rate)
class ToneColorConverter(OpenVoiceBaseClass):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.watermark_model = None
def extract_se(self, ref_wav_list, se_save_path=None):
if isinstance(ref_wav_list, str):
ref_wav_list = [ref_wav_list]
device = self.device
hps = self.hps
gs = []
for fname in ref_wav_list:
audio_ref, sr = librosa.load(fname, sr=hps.data.sampling_rate)
y = torch.FloatTensor(audio_ref)
y = y.to(device)
y = y.unsqueeze(0)
y = spectrogram_torch(y, hps.data.filter_length,
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
center=False).to(device)
with torch.no_grad():
g = self.model.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
gs.append(g.detach())
gs = torch.stack(gs).mean(0)
if se_save_path is not None:
os.makedirs(os.path.dirname(se_save_path), exist_ok=True)
torch.save(gs.cpu(), se_save_path)
return gs
def convert(self, audio_src_path, src_se, tgt_se, output_path=None, tau=0.3, message="default"):
hps = self.hps
# load audio
audio, sample_rate = librosa.load(audio_src_path, sr=hps.data.sampling_rate)
audio = torch.tensor(audio).float()
with torch.no_grad():
y = torch.FloatTensor(audio).to(self.device)
y = y.unsqueeze(0)
spec = spectrogram_torch(y, hps.data.filter_length,
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
center=False).to(self.device)
spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.device)
audio = self.model.voice_conversion(spec, spec_lengths, sid_src=src_se, sid_tgt=tgt_se, tau=tau)[0][
0, 0].data.cpu().float().numpy()
audio = self.add_watermark(audio, message)
if output_path is None:
return audio
else:
soundfile.write(output_path, audio, hps.data.sampling_rate)
def add_watermark(self, audio, message):
if self.watermark_model is None:
return audio
device = self.device
bits = utils.string_to_bits(message).reshape(-1)
n_repeat = len(bits) // 32
K = 16000
coeff = 2
for n in range(n_repeat):
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
if len(trunck) != K:
print('Audio too short, fail to add watermark')
break
message_npy = bits[n * 32: (n + 1) * 32]
with torch.no_grad():
signal = torch.FloatTensor(trunck).to(device)[None]
message_tensor = torch.FloatTensor(message_npy).to(device)[None]
signal_wmd_tensor = self.watermark_model.encode(signal, message_tensor)
signal_wmd_npy = signal_wmd_tensor.detach().cpu().squeeze()
audio[(coeff * n) * K: (coeff * n + 1) * K] = signal_wmd_npy
return audio
def detect_watermark(self, audio, n_repeat):
bits = []
K = 16000
coeff = 2
for n in range(n_repeat):
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
if len(trunck) != K:
print('Audio too short, fail to detect watermark')
return 'Fail'
with torch.no_grad():
signal = torch.FloatTensor(trunck).to(self.device).unsqueeze(0)
message_decoded_npy = (self.watermark_model.decode(signal) >= 0.5).int().detach().cpu().numpy().squeeze()
bits.append(message_decoded_npy)
bits = np.stack(bits).reshape(-1, 8)
message = utils.bits_to_string(bits)
return message