from monotonic_align import maximum_path from monotonic_align import mask_from_lens from monotonic_align.core import maximum_path_c import numpy as np import torch import copy from torch import nn import torch.nn.functional as F import torchaudio import librosa import matplotlib.pyplot as plt from munch import Munch import re import json import numpy as np def maximum_path(neg_cent, mask): """Cython optimized version. neg_cent: [b, t_t, t_s] mask: [b, t_t, t_s] """ device = neg_cent.device dtype = neg_cent.dtype neg_cent = np.ascontiguousarray(neg_cent.data.cpu().numpy().astype(np.float32)) path = np.ascontiguousarray(np.zeros(neg_cent.shape, dtype=np.int32)) t_t_max = np.ascontiguousarray( mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32) ) t_s_max = np.ascontiguousarray( mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32) ) maximum_path_c(path, neg_cent, t_t_max, t_s_max) return torch.from_numpy(path).to(device=device, dtype=dtype) def get_data_path_list(train_path=None, val_path=None): if train_path is None: train_path = "Data/train_list.txt" if val_path is None: val_path = "Data/val_list.txt" with open(train_path, "r", encoding="utf-8", errors="ignore") as f: train_list = f.readlines() with open(val_path, "r", encoding="utf-8", errors="ignore") as f: val_list = f.readlines() return train_list, val_list def length_to_mask(lengths): mask = ( torch.arange(lengths.max()) .unsqueeze(0) .expand(lengths.shape[0], -1) .type_as(lengths) ) mask = torch.gt(mask + 1, lengths.unsqueeze(1)) return mask # for norm consistency loss def log_norm(x, mean=-4, std=4, dim=2): """ normalized log mel -> mel -> norm -> log(norm) """ x = torch.log(torch.exp(x * std + mean).norm(dim=dim)) return x def get_image(arrs): plt.switch_backend("agg") fig = plt.figure() ax = plt.gca() ax.imshow(arrs) return fig def recursive_munch(d): if isinstance(d, dict): return Munch((k, recursive_munch(v)) for k, v in d.items()) elif isinstance(d, list): return [recursive_munch(v) for v in d] else: return d def log_print(message, logger): logger.info(message) print(message) def get_hparams_from_file(config_path): with open(config_path, "r", encoding="utf-8") as f: data = f.read() config = json.loads(data) hparams = HParams(**config) return hparams class HParams: def __init__(self, **kwargs): for k, v in kwargs.items(): if type(v) == dict: v = HParams(**v) self[k] = v def keys(self): return self.__dict__.keys() def items(self): return self.__dict__.items() def values(self): return self.__dict__.values() def __len__(self): return len(self.__dict__) def __getitem__(self, key): return getattr(self, key) def __setitem__(self, key, value): return setattr(self, key, value) def __contains__(self, key): return key in self.__dict__ def __repr__(self): return self.__dict__.__repr__() def string_to_bits(string, pad_len=8): # Convert each character to its ASCII value ascii_values = [ord(char) for char in string] # Convert ASCII values to binary representation binary_values = [bin(value)[2:].zfill(8) for value in ascii_values] # Convert binary strings to integer arrays bit_arrays = [[int(bit) for bit in binary] for binary in binary_values] # Convert list of arrays to NumPy array numpy_array = np.array(bit_arrays) numpy_array_full = np.zeros((pad_len, 8), dtype=numpy_array.dtype) numpy_array_full[:, 2] = 1 max_len = min(pad_len, len(numpy_array)) numpy_array_full[:max_len] = numpy_array[:max_len] return numpy_array_full def bits_to_string(bits_array): # Convert each row of the array to a binary string binary_values = [''.join(str(bit) for bit in row) for row in bits_array] # Convert binary strings to ASCII values ascii_values = [int(binary, 2) for binary in binary_values] # Convert ASCII values to characters output_string = ''.join(chr(value) for value in ascii_values) return output_string def split_sentence(text, min_len=10, language_str='[EN]'): if language_str in ['EN']: sentences = split_sentences_latin(text, min_len=min_len) else: sentences = split_sentences_zh(text, min_len=min_len) return sentences def split_sentences_latin(text, min_len=10): """Split Long sentences into list of short ones Args: str: Input sentences. Returns: List[str]: list of output sentences. """ # deal with dirty sentences text = re.sub('[。!?;]', '.', text) text = re.sub('[,]', ',', text) text = re.sub('[“”]', '"', text) text = re.sub('[‘’]', "'", text) text = re.sub(r"[\<\>\(\)\[\]\"\«\»]+", "", text) text = re.sub('[\n\t ]+', ' ', text) text = re.sub('([,.!?;])', r'\1 $#!', text) # split sentences = [s.strip() for s in text.split('$#!')] if len(sentences[-1]) == 0: del sentences[-1] new_sentences = [] new_sent = [] count_len = 0 for ind, sent in enumerate(sentences): # print(sent) new_sent.append(sent) count_len += len(sent.split(" ")) if count_len > min_len or ind == len(sentences) - 1: count_len = 0 new_sentences.append(' '.join(new_sent)) new_sent = [] return merge_short_sentences_latin(new_sentences) def merge_short_sentences_latin(sens): sens_out = [] for s in sens: # If the previous sentense is too short, merge them with # the current sentence. if len(sens_out) > 0 and len(sens_out[-1].split(" ")) <= 2: sens_out[-1] = sens_out[-1] + " " + s else: sens_out.append(s) try: if len(sens_out[-1].split(" ")) <= 2: sens_out[-2] = sens_out[-2] + " " + sens_out[-1] sens_out.pop(-1) except: pass return sens_out def split_sentences_zh(text, min_len=10): text = re.sub('[。!?;]', '.', text) text = re.sub('[,]', ',', text) # 将文本中的换行符、空格和制表符替换为空格 text = re.sub('[\n\t ]+', ' ', text) # 在标点符号后添加一个空格 text = re.sub('([,.!?;])', r'\1 $#!', text) # 分隔句子并去除前后空格 # sentences = [s.strip() for s in re.split('(。|!|?|;)', text)] sentences = [s.strip() for s in text.split('$#!')] if len(sentences[-1]) == 0: del sentences[-1] new_sentences = [] new_sent = [] count_len = 0 for ind, sent in enumerate(sentences): new_sent.append(sent) count_len += len(sent) if count_len > min_len or ind == len(sentences) - 1: count_len = 0 new_sentences.append(' '.join(new_sent)) new_sent = [] return merge_short_sentences_zh(new_sentences) def merge_short_sentences_zh(sens): # return sens """Avoid short sentences by merging them with the following sentence. Args: List[str]: list of input sentences. Returns: List[str]: list of output sentences. """ sens_out = [] for s in sens: # If the previous sentense is too short, merge them with # the current sentence. if len(sens_out) > 0 and len(sens_out[-1]) <= 2: sens_out[-1] = sens_out[-1] + " " + s else: sens_out.append(s) try: if len(sens_out[-1]) <= 2: sens_out[-2] = sens_out[-2] + " " + sens_out[-1] sens_out.pop(-1) except: pass return sens_out