''' import os import torch import se_extractor from api import ToneColorConverter ckpt_converter = 'checkpoints/converter' device = 'cuda:0' output_dir = 'outputs' tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device) tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth') os.makedirs(output_dir, exist_ok=True) from openai import OpenAI client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) response = client.audio.speech.create( model="tts-1", voice="nova", input="This audio will be used to extract the base speaker tone color embedding. " + \ "Typically a very short audio should be sufficient, but increasing the audio " + \ "length will also improve the output audio quality." ) response.stream_to_file(f"{output_dir}/openai_source_output.mp3") base_speaker = f"{output_dir}/openai_source_output.mp3" source_se, audio_name = se_extractor.get_se(base_speaker, tone_color_converter) reference_speaker = 'resources/example_reference.mp3' target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter) text = [ "MyShell is a decentralized and comprehensive platform for discovering, creating, and staking AI-native apps.", ] src_path = f'{output_dir}/tmp.wav' for i, t in enumerate(text): response = client.audio.speech.create( model="tts-1", voice="alloy", input=t, ) response.stream_to_file(src_path) save_path = f'{output_dir}/output_crosslingual_{i}.wav' tone_color_converter.convert( audio_src_path=src_path, src_se=source_se, tgt_se=target_se, output_path=save_path, message='') model = models.openai("gpt-3.5-turbo",system_prompt='You are an expert in identifying the emotion of a sentence') result = model.generate_choice("Harry's mind was racing with thoughts of the recent events at Hogwarts", ["friendly", "cheerful", "excited", "sad", "angry", "terrified", "shouting", "whispering"]) print(result) from openai import OpenAI import os client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) response = client.audio.speech.create( model="tts-1", voice="fable", input="This audio will be used to extract the base speaker tone color embedding. " + \ "Typically a very short audio should be sufficient, but increasing the audio " + \ "length will also improve the output audio quality." ) response.stream_to_file(f"openai_source_output.mp3") ''' import boto3 s3_client = boto3.client('s3',aws_access_key_id='AKIAW7WTE5RKJY2WJ55F', aws_secret_access_key='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') response = s3_client.upload_file('/root/src/videly/openai_source_output.mp3', 'demovidelyusergenerations', 'test.mp3')