StronLu commited on
Commit
365d200
·
1 Parent(s): 635208d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -69
app.py CHANGED
@@ -1,69 +1,24 @@
1
- import os
2
- import gradio as gr
3
- from transformers import AutoTokenizer, AutoModelForCausalLM
4
-
5
- model_name = "meta-llama/Llama-2-13b-chat-hf" # 将此处替换为你想使用的模型的名称
6
- tokenizer = AutoTokenizer.from_pretrained(model_name)
7
- model = AutoModelForCausalLM.from_pretrained(model_name)
8
-
9
- class Conversation:
10
- def __init__(self, prompt, round):
11
- self.prompt = prompt
12
- self.round = round
13
- self.messages = []
14
- self.messages.append({"role": "system", "content": self.prompt})
15
-
16
- def ask(self, question):
17
- try:
18
- self.messages.append({"role": "user", "content": question})
19
- input_text = self._build_message(self.messages)
20
- encoded_input = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors='pt')
21
- output = model.generate(encoded_input, max_length=200, temperature=0.5)
22
- message = tokenizer.decode(output[:, encoded_input.shape[-1]:][0], skip_special_tokens=True)
23
- except Exception as e:
24
- print(e)
25
- return e
26
-
27
- self.messages.append({"role": "assistant", "content": message})
28
-
29
- if len(self.messages) > self.round * 2 + 1:
30
- text = self._build_message(self.messages)
31
- self.messages = []
32
- self.messages.append({"role": "system", "content": text})
33
- return message
34
-
35
- def _build_message(self, messages):
36
- text = ""
37
- for message in messages:
38
- if message["role"] == "user":
39
- text += "User : " + message["content"] + "\n\n"
40
- if message["role"] == "assistant":
41
- text += "Assistant : " + message["content"] + "\n\n"
42
- return text
43
-
44
- prompt = """你是一个大数据和AI领域的专家,用中文回答大数据和AI的相关问题。你的回答需要满足以下要求:
45
- 1. 你的回答必须是中文
46
- 2. 回答限制在200个字以内
47
- 3. 拒绝回答违反社会道德和法律的问题"""
48
-
49
- conv = Conversation(prompt, 3)
50
-
51
- def answer(question, history=[]):
52
- history.append(question)
53
- message = conv.ask(question)
54
- history.append(message)
55
- responses = [(u,b) for u,b in zip(history[::2], history[1::2])]
56
- print(responses)
57
- return responses, history
58
-
59
- with gr.Blocks(css="#chatbot{height:300px} .overflow-y-auto{height:500px}") as rxbot:
60
- chatbot = gr.Chatbot(elem_id="chatbot")
61
- state = gr.State([])
62
-
63
- with gr.Row():
64
- txt = gr.Textbox(show_label=False, placeholder="请输入你的问题").style(container=False)
65
-
66
- txt.submit(answer, [txt, state], [chatbot, state])
67
-
68
-
69
- rxbot.launch()
 
1
+ from transformers import AutoTokenizer
2
+ import transformers
3
+ import torch
4
+
5
+ model = "meta-llama/Llama-2-7b-chat-hf"
6
+
7
+ tokenizer = AutoTokenizer.from_pretrained(model)
8
+ pipeline = transformers.pipeline(
9
+ "text-generation",
10
+ model=model,
11
+ torch_dtype=torch.float16,
12
+ device_map="auto",
13
+ )
14
+
15
+ sequences = pipeline(
16
+ 'I liked "Breaking Bad" and "Band of Brothers". Do you have any recommendations of other shows I might like?\n',
17
+ do_sample=True,
18
+ top_k=10,
19
+ num_return_sequences=1,
20
+ eos_token_id=tokenizer.eos_token_id,
21
+ max_length=200,
22
+ )
23
+ for seq in sequences:
24
+ print(f"Result: {seq['generated_text']}")