Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Conversation, pipeline
|
3 |
+
|
4 |
+
# 创建聊天机器人pipeline,使用你的 api key
|
5 |
+
chatbot_pipeline = pipeline("conversational", model="Llama-2-70b-chat-hf", use_auth_token="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")
|
6 |
+
|
7 |
+
def chatbot_response(input_text, history=[]):
|
8 |
+
# 添加新的用户输入到对话历史
|
9 |
+
history.append(input_text)
|
10 |
+
|
11 |
+
# 使用 Hugging Face's Conversation API 创建对话
|
12 |
+
conversation = Conversation(input_text)
|
13 |
+
|
14 |
+
# 获取模型的回答
|
15 |
+
responses = chatbot_pipeline([conversation])
|
16 |
+
model_response = responses[-1].generated_responses[-1]
|
17 |
+
|
18 |
+
# 添加模型的回答到对话历史
|
19 |
+
history.append(model_response)
|
20 |
+
|
21 |
+
# 创建用于显示在 Gradio UI 的聊天历史
|
22 |
+
chat_log = [(u,b) for u,b in zip(history[::2], history[1::2])]
|
23 |
+
|
24 |
+
return chat_log, history
|
25 |
+
|
26 |
+
# 创建 Gradio 接口
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=chatbot_response,
|
29 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder='Type a message...'),
|
30 |
+
outputs=[gr.outputs.Textbox(label="Chat History"), gr.outputs.Textbox(label="Chat Log")]
|
31 |
+
)
|
32 |
+
|
33 |
+
# 启动 Gradio 应用
|
34 |
+
iface.launch()
|