Spaces:
Runtime error
Runtime error
Studiobotxyz
commited on
Commit
·
fd34502
1
Parent(s):
d60b634
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system('pip install ctransformers')
|
3 |
+
|
4 |
+
import ctransformers
|
5 |
+
import time
|
6 |
+
import requests
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
|
10 |
+
import uuid
|
11 |
+
#Get the model file - you will need Expandable Storage to make this work
|
12 |
+
|
13 |
+
if not os.path.isfile('llama-2-7b.ggmlv3.q4_K_S.bin'):
|
14 |
+
print("Downloading Model from HuggingFace")
|
15 |
+
url = "https://huggingface.co/TheBloke/Llama-2-7B-GGML/resolve/main/llama-2-7b.ggmlv3.q4_K_S.bin"
|
16 |
+
response = requests.get(url, stream=True)
|
17 |
+
total_size_in_bytes= int(response.headers.get('content-length', 0))
|
18 |
+
block_size = 1024 #1 Kibibyte
|
19 |
+
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
|
20 |
+
with open('llama-2-7b.ggmlv3.q4_K_S.bin', 'wb') as file:
|
21 |
+
for data in response.iter_content(block_size):
|
22 |
+
progress_bar.update(len(data))
|
23 |
+
file.write(data)
|
24 |
+
progress_bar.close()
|
25 |
+
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
|
26 |
+
print("ERROR, something went wrong")
|
27 |
+
|
28 |
+
#Sets up the transformer library and adds in the Llama-2 model
|
29 |
+
|
30 |
+
configObj = ctransformers.Config(stop=["\n", 'User'])
|
31 |
+
config = ctransformers.AutoConfig(config=configObj, model_type='llama')
|
32 |
+
config.config.stop = ["\n"]
|
33 |
+
|
34 |
+
llm = ctransformers.AutoModelForCausalLM.from_pretrained('./llama-2-7b.ggmlv3.q4_K_S.bin', config=config)
|
35 |
+
print("Loaded model")
|
36 |
+
|
37 |
+
def time_it(func):
|
38 |
+
def wrapper(*args, **kwargs):
|
39 |
+
start_time = time.time()
|
40 |
+
result = func(*args, **kwargs)
|
41 |
+
end_time = time.time()
|
42 |
+
execution_time = end_time - start_time
|
43 |
+
print(f"Function '{func.__name__}' took {execution_time:.6f} seconds to execute.")
|
44 |
+
return result
|
45 |
+
return wrapper
|
46 |
+
|
47 |
+
def complete(prompt, stop=["User", "Assistant"]):
|
48 |
+
tokens = llm.tokenize(prompt)
|
49 |
+
token_count = 0
|
50 |
+
output = ''
|
51 |
+
for token in llm.generate(tokens):
|
52 |
+
token_count += 1
|
53 |
+
result = llm.detokenize(token)
|
54 |
+
output += result
|
55 |
+
for word in stop:
|
56 |
+
if word in output:
|
57 |
+
print('\n')
|
58 |
+
return [output, token_count]
|
59 |
+
print(result, end='',flush=True)
|
60 |
+
|
61 |
+
print('\n')
|
62 |
+
return [output, token_count]
|
63 |
+
|
64 |
+
while True:
|
65 |
+
question = input("\nWhat is your question? > ")
|
66 |
+
start_time = time.time()
|
67 |
+
output, token_count = complete(f'User: {question}. Can you please answer this as informative but concisely as possible.\nAssistant: ')
|
68 |
+
end_time = time.time()
|
69 |
+
execution_time = end_time - start_time
|
70 |
+
print(f"{token_count} tokens generated in {execution_time:.6f} seconds.\n{token_count/execution_time} tokens per second")
|
71 |
+
|