Spaces:
Sleeping
Sleeping
Commit
·
4ab0120
1
Parent(s):
67ee73b
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,11 @@
|
|
1 |
import os
|
2 |
-
os.system("pip install
|
3 |
import time
|
4 |
import requests
|
5 |
from tqdm import tqdm
|
6 |
-
from flask import Flask, request, jsonify
|
7 |
import ctransformers
|
8 |
import gradio as gr
|
9 |
|
10 |
-
app = Flask(__name__)
|
11 |
-
|
12 |
if not os.path.isfile('llama-2-7b.ggmlv3.q4_K_S.bin'):
|
13 |
print("Downloading Model from HuggingFace")
|
14 |
url = "https://huggingface.co/TheBloke/Llama-2-7B-GGML/resolve/main/llama-2-7b.ggmlv3.q4_K_S.bin"
|
@@ -31,16 +28,6 @@ config.config.stop = ["\n"]
|
|
31 |
llm = ctransformers.AutoModelForCausalLM.from_pretrained('./llama-2-7b.ggmlv3.q4_K_S.bin', config=config)
|
32 |
print("Loaded model")
|
33 |
|
34 |
-
def time_it(func):
|
35 |
-
def wrapper(*args, **kwargs):
|
36 |
-
start_time = time.time()
|
37 |
-
result = func(*args, **kwargs)
|
38 |
-
end_time = time.time()
|
39 |
-
execution_time = end_time - start_time
|
40 |
-
print(f"Function '{func.__name__}' took {execution_time:.6f} seconds to execute.")
|
41 |
-
return result
|
42 |
-
return wrapper
|
43 |
-
|
44 |
def complete(prompt, stop=["User", "Assistant"]):
|
45 |
tokens = llm.tokenize(prompt)
|
46 |
token_count = 0
|
@@ -58,31 +45,9 @@ def complete(prompt, stop=["User", "Assistant"]):
|
|
58 |
print('\n')
|
59 |
return [output, token_count]
|
60 |
|
61 |
-
|
62 |
-
def generate_response():
|
63 |
-
data = request.get_json()
|
64 |
-
question = data.get('question', '')
|
65 |
-
|
66 |
-
start_time = time.time()
|
67 |
output, token_count = complete(f'User: {question}. Can you please answer this as informatively but concisely as possible.\nAssistant: ')
|
68 |
-
|
69 |
-
execution_time = end_time - start_time
|
70 |
-
|
71 |
-
response = {
|
72 |
-
'output': output,
|
73 |
-
'token_count': token_count,
|
74 |
-
'execution_time': execution_time,
|
75 |
-
'tokens_per_second': token_count / execution_time
|
76 |
-
}
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
def greet(name):
|
81 |
-
_, token_count = complete(f'User: {name}. Can you please answer this as informatively but concisely as possible.\nAssistant: ')
|
82 |
-
return f"Response: {name} | Tokens: {token_count}"
|
83 |
-
|
84 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
85 |
iface.launch()
|
86 |
-
|
87 |
-
if __name__ == '__main__':
|
88 |
-
app.run(debug=True)
|
|
|
1 |
import os
|
2 |
+
os.system("pip install ctransformers gradio")
|
3 |
import time
|
4 |
import requests
|
5 |
from tqdm import tqdm
|
|
|
6 |
import ctransformers
|
7 |
import gradio as gr
|
8 |
|
|
|
|
|
9 |
if not os.path.isfile('llama-2-7b.ggmlv3.q4_K_S.bin'):
|
10 |
print("Downloading Model from HuggingFace")
|
11 |
url = "https://huggingface.co/TheBloke/Llama-2-7B-GGML/resolve/main/llama-2-7b.ggmlv3.q4_K_S.bin"
|
|
|
28 |
llm = ctransformers.AutoModelForCausalLM.from_pretrained('./llama-2-7b.ggmlv3.q4_K_S.bin', config=config)
|
29 |
print("Loaded model")
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def complete(prompt, stop=["User", "Assistant"]):
|
32 |
tokens = llm.tokenize(prompt)
|
33 |
token_count = 0
|
|
|
45 |
print('\n')
|
46 |
return [output, token_count]
|
47 |
|
48 |
+
def greet(question):
|
|
|
|
|
|
|
|
|
|
|
49 |
output, token_count = complete(f'User: {question}. Can you please answer this as informatively but concisely as possible.\nAssistant: ')
|
50 |
+
return f"Response: {output} | Tokens: {token_count}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text", live=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
iface.launch()
|
|
|
|
|
|