import os os.system("pip install flask ctransformers") import time import requests from tqdm import tqdm from flask import Flask, request, jsonify import ctransformers app = Flask(__name__) if not os.path.isfile('llama-2-7b.ggmlv3.q4_K_S.bin'): print("Downloading Model from HuggingFace") url = "https://huggingface.co/TheBloke/Llama-2-7B-GGML/resolve/main/llama-2-7b.ggmlv3.q4_K_S.bin" response = requests.get(url, stream=True) total_size_in_bytes = int(response.headers.get('content-length', 0)) block_size = 1024 # 1 Kibibyte progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True) with open('llama-2-7b.ggmlv3.q4_K_S.bin', 'wb') as file: for data in response.iter_content(block_size): progress_bar.update(len(data)) file.write(data) progress_bar.close() if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes: print("ERROR, something went wrong") configObj = ctransformers.Config(stop=["\n", 'User']) config = ctransformers.AutoConfig(config=configObj, model_type='llama') config.config.stop = ["\n"] llm = ctransformers.AutoModelForCausalLM.from_pretrained('./llama-2-7b.ggmlv3.q4_K_S.bin', config=config) print("Loaded model") def time_it(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() execution_time = end_time - start_time print(f"Function '{func.__name__}' took {execution_time:.6f} seconds to execute.") return result return wrapper def complete(prompt, stop=["User", "Assistant"]): tokens = llm.tokenize(prompt) token_count = 0 output = '' for token in llm.generate(tokens): token_count += 1 result = llm.detokenize(token) output += result for word in stop: if word in output: print('\n') return [output, token_count] print(result, end='', flush=True) print('\n') return [output, token_count] @app.route('/generate', methods=['POST']) def generate_response(): data = request.get_json() question = data.get('question', '') start_time = time.time() output, token_count = complete(f'User: {question}. Can you please answer this as informatively but concisely as possible.\nAssistant: ') end_time = time.time() execution_time = end_time - start_time response = { 'output': output, 'token_count': token_count, 'execution_time': execution_time, 'tokens_per_second': token_count / execution_time } return jsonify(response) if __name__ == '__main__': app.run(debug=True)