from fastapi import FastAPI from transformers import pipeline from fastapi.middleware.cors import CORSMiddleware # Create a new FastAPI app instance app = FastAPI() origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Initialize the text generation pipeline # This function will be able to generate text # given an input. pipe = pipeline("text2text-generation", model="Quizzer/Question2WrongAnswer") @app.get("/") def read_root(): return {"Hello": "World!"} # Define a function to handle the GET request at `/generate` # The generate() function is defined as a FastAPI route that takes a # string parameter called text. The function generates text based on the # input using the pipeline() object, and returns a JSON response # containing the generated text under the key "output" @app.get("/generate") def generate(text: str): """ Using the text2text-generation pipeline from `transformers`, generate text from the given input text. The model used is `google/flan-t5-small`, which can be found [here](). """ # Use the pipeline to generate text from the given input text output = pipe(text) # Return the generated text in a JSON response return {"output": output[0]["generated_text"]} @app.get("/generates") def generate(topic: str,question:str,context:str,n: int): text = "Tópico: {} Questão: {} Context: {}".format(topic,question,context) output = pipe(text,num_return_sequences=n,num_beams=n) # Return the generated text in a JSON response return {"output": [output[i]["generated_text"] for i in range(len(output))]}