File size: 15,696 Bytes
20a5020 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import torch
import torchaudio
import gradio as gr
from os import getenv
from zonos.model import Zonos, DEFAULT_BACKBONE_CLS as ZonosBackbone
from zonos.conditioning import make_cond_dict, supported_language_codes
from zonos.utils import DEFAULT_DEVICE as device
CURRENT_MODEL_TYPE = None
CURRENT_MODEL = None
SPEAKER_EMBEDDING = None
SPEAKER_AUDIO_PATH = None
def load_model_if_needed(model_choice: str):
global CURRENT_MODEL_TYPE, CURRENT_MODEL
if CURRENT_MODEL_TYPE != model_choice:
if CURRENT_MODEL is not None:
del CURRENT_MODEL
torch.cuda.empty_cache()
print(f"Loading {model_choice} model...")
CURRENT_MODEL = Zonos.from_pretrained(model_choice, device=device)
CURRENT_MODEL.requires_grad_(False).eval()
CURRENT_MODEL_TYPE = model_choice
print(f"{model_choice} model loaded successfully!")
return CURRENT_MODEL
def update_ui(model_choice):
"""
Dynamically show/hide UI elements based on the model's conditioners.
We do NOT display 'language_id' or 'ctc_loss' even if they exist in the model.
"""
model = load_model_if_needed(model_choice)
cond_names = [c.name for c in model.prefix_conditioner.conditioners]
print("Conditioners in this model:", cond_names)
text_update = gr.update(visible=("espeak" in cond_names))
language_update = gr.update(visible=("espeak" in cond_names))
speaker_audio_update = gr.update(visible=("speaker" in cond_names))
prefix_audio_update = gr.update(visible=True)
emotion1_update = gr.update(visible=("emotion" in cond_names))
emotion2_update = gr.update(visible=("emotion" in cond_names))
emotion3_update = gr.update(visible=("emotion" in cond_names))
emotion4_update = gr.update(visible=("emotion" in cond_names))
emotion5_update = gr.update(visible=("emotion" in cond_names))
emotion6_update = gr.update(visible=("emotion" in cond_names))
emotion7_update = gr.update(visible=("emotion" in cond_names))
emotion8_update = gr.update(visible=("emotion" in cond_names))
vq_single_slider_update = gr.update(visible=("vqscore_8" in cond_names))
fmax_slider_update = gr.update(visible=("fmax" in cond_names))
pitch_std_slider_update = gr.update(visible=("pitch_std" in cond_names))
speaking_rate_slider_update = gr.update(visible=("speaking_rate" in cond_names))
dnsmos_slider_update = gr.update(visible=("dnsmos_ovrl" in cond_names))
speaker_noised_checkbox_update = gr.update(visible=("speaker_noised" in cond_names))
unconditional_keys_update = gr.update(
choices=[name for name in cond_names if name not in ("espeak", "language_id")]
)
return (
text_update,
language_update,
speaker_audio_update,
prefix_audio_update,
emotion1_update,
emotion2_update,
emotion3_update,
emotion4_update,
emotion5_update,
emotion6_update,
emotion7_update,
emotion8_update,
vq_single_slider_update,
fmax_slider_update,
pitch_std_slider_update,
speaking_rate_slider_update,
dnsmos_slider_update,
speaker_noised_checkbox_update,
unconditional_keys_update,
)
def generate_audio(
model_choice,
text,
language,
speaker_audio,
prefix_audio,
e1,
e2,
e3,
e4,
e5,
e6,
e7,
e8,
vq_single,
fmax,
pitch_std,
speaking_rate,
dnsmos_ovrl,
speaker_noised,
cfg_scale,
top_p,
top_k,
min_p,
linear,
confidence,
quadratic,
seed,
randomize_seed,
unconditional_keys,
progress=gr.Progress(),
):
"""
Generates audio based on the provided UI parameters.
We do NOT use language_id or ctc_loss even if the model has them.
"""
selected_model = load_model_if_needed(model_choice)
speaker_noised_bool = bool(speaker_noised)
fmax = float(fmax)
pitch_std = float(pitch_std)
speaking_rate = float(speaking_rate)
dnsmos_ovrl = float(dnsmos_ovrl)
cfg_scale = float(cfg_scale)
top_p = float(top_p)
top_k = int(top_k)
min_p = float(min_p)
linear = float(linear)
confidence = float(confidence)
quadratic = float(quadratic)
seed = int(seed)
max_new_tokens = 86 * 30
# This is a bit ew, but works for now.
global SPEAKER_AUDIO_PATH, SPEAKER_EMBEDDING
if randomize_seed:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
torch.manual_seed(seed)
if speaker_audio is not None and "speaker" not in unconditional_keys:
if speaker_audio != SPEAKER_AUDIO_PATH:
print("Recomputed speaker embedding")
wav, sr = torchaudio.load(speaker_audio)
SPEAKER_EMBEDDING = selected_model.make_speaker_embedding(wav, sr)
SPEAKER_EMBEDDING = SPEAKER_EMBEDDING.to(device, dtype=torch.bfloat16)
SPEAKER_AUDIO_PATH = speaker_audio
audio_prefix_codes = None
if prefix_audio is not None:
wav_prefix, sr_prefix = torchaudio.load(prefix_audio)
wav_prefix = wav_prefix.mean(0, keepdim=True)
wav_prefix = selected_model.autoencoder.preprocess(wav_prefix, sr_prefix)
wav_prefix = wav_prefix.to(device, dtype=torch.float32)
audio_prefix_codes = selected_model.autoencoder.encode(wav_prefix.unsqueeze(0))
emotion_tensor = torch.tensor(list(map(float, [e1, e2, e3, e4, e5, e6, e7, e8])), device=device)
vq_val = float(vq_single)
vq_tensor = torch.tensor([vq_val] * 8, device=device).unsqueeze(0)
cond_dict = make_cond_dict(
text=text,
language=language,
speaker=SPEAKER_EMBEDDING,
emotion=emotion_tensor,
vqscore_8=vq_tensor,
fmax=fmax,
pitch_std=pitch_std,
speaking_rate=speaking_rate,
dnsmos_ovrl=dnsmos_ovrl,
speaker_noised=speaker_noised_bool,
device=device,
unconditional_keys=unconditional_keys,
)
conditioning = selected_model.prepare_conditioning(cond_dict)
estimated_generation_duration = 30 * len(text) / 400
estimated_total_steps = int(estimated_generation_duration * 86)
def update_progress(_frame: torch.Tensor, step: int, _total_steps: int) -> bool:
progress((step, estimated_total_steps))
return True
codes = selected_model.generate(
prefix_conditioning=conditioning,
audio_prefix_codes=audio_prefix_codes,
max_new_tokens=max_new_tokens,
cfg_scale=cfg_scale,
batch_size=1,
sampling_params=dict(top_p=top_p, top_k=top_k, min_p=min_p, linear=linear, conf=confidence, quad=quadratic),
callback=update_progress,
)
wav_out = selected_model.autoencoder.decode(codes).cpu().detach()
sr_out = selected_model.autoencoder.sampling_rate
if wav_out.dim() == 2 and wav_out.size(0) > 1:
wav_out = wav_out[0:1, :]
return (sr_out, wav_out.squeeze().numpy()), seed
def build_interface():
supported_models = []
if "transformer" in ZonosBackbone.supported_architectures:
supported_models.append("Zyphra/Zonos-v0.1-transformer")
if "hybrid" in ZonosBackbone.supported_architectures:
supported_models.append("Zyphra/Zonos-v0.1-hybrid")
else:
print(
"| The current ZonosBackbone does not support the hybrid architecture, meaning only the transformer model will be available in the model selector.\n"
"| This probably means the mamba-ssm library has not been installed."
)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
model_choice = gr.Dropdown(
choices=supported_models,
value=supported_models[0],
label="Zonos Model Type",
info="Select the model variant to use.",
)
text = gr.Textbox(
label="Text to Synthesize",
value="Zonos uses eSpeak for text to phoneme conversion!",
lines=4,
max_length=500, # approximately
)
language = gr.Dropdown(
choices=supported_language_codes,
value="en-us",
label="Language Code",
info="Select a language code.",
)
prefix_audio = gr.Audio(
value="assets/silence_100ms.wav",
label="Optional Prefix Audio (continue from this audio)",
type="filepath",
)
with gr.Column():
speaker_audio = gr.Audio(
label="Optional Speaker Audio (for cloning)",
type="filepath",
)
speaker_noised_checkbox = gr.Checkbox(label="Denoise Speaker?", value=False)
with gr.Row():
with gr.Column():
gr.Markdown("## Conditioning Parameters")
dnsmos_slider = gr.Slider(1.0, 5.0, value=4.0, step=0.1, label="DNSMOS Overall")
fmax_slider = gr.Slider(0, 24000, value=24000, step=1, label="Fmax (Hz)")
vq_single_slider = gr.Slider(0.5, 0.8, 0.78, 0.01, label="VQ Score")
pitch_std_slider = gr.Slider(0.0, 300.0, value=45.0, step=1, label="Pitch Std")
speaking_rate_slider = gr.Slider(5.0, 30.0, value=15.0, step=0.5, label="Speaking Rate")
with gr.Column():
gr.Markdown("## Generation Parameters")
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.0, 0.1, label="CFG Scale")
seed_number = gr.Number(label="Seed", value=420, precision=0)
randomize_seed_toggle = gr.Checkbox(label="Randomize Seed (before generation)", value=True)
with gr.Accordion("Sampling", open=False):
with gr.Row():
with gr.Column():
gr.Markdown("### NovelAi's unified sampler")
linear_slider = gr.Slider(-2.0, 2.0, 0.5, 0.01, label="Linear (set to 0 to disable unified sampling)", info="High values make the output less random.")
#Conf's theoretical range is between -2 * Quad and 0.
confidence_slider = gr.Slider(-2.0, 2.0, 0.40, 0.01, label="Confidence", info="Low values make random outputs more random.")
quadratic_slider = gr.Slider(-2.0, 2.0, 0.00, 0.01, label="Quadratic", info="High values make low probablities much lower.")
with gr.Column():
gr.Markdown("### Legacy sampling")
top_p_slider = gr.Slider(0.0, 1.0, 0, 0.01, label="Top P")
min_k_slider = gr.Slider(0.0, 1024, 0, 1, label="Min K")
min_p_slider = gr.Slider(0.0, 1.0, 0, 0.01, label="Min P")
with gr.Accordion("Advanced Parameters", open=False):
gr.Markdown(
"### Unconditional Toggles\n"
"Checking a box will make the model ignore the corresponding conditioning value and make it unconditional.\n"
'Practically this means the given conditioning feature will be unconstrained and "filled in automatically".'
)
with gr.Row():
unconditional_keys = gr.CheckboxGroup(
[
"speaker",
"emotion",
"vqscore_8",
"fmax",
"pitch_std",
"speaking_rate",
"dnsmos_ovrl",
"speaker_noised",
],
value=["emotion"],
label="Unconditional Keys",
)
gr.Markdown(
"### Emotion Sliders\n"
"Warning: The way these sliders work is not intuitive and may require some trial and error to get the desired effect.\n"
"Certain configurations can cause the model to become unstable. Setting emotion to unconditional may help."
)
with gr.Row():
emotion1 = gr.Slider(0.0, 1.0, 1.0, 0.05, label="Happiness")
emotion2 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Sadness")
emotion3 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Disgust")
emotion4 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Fear")
with gr.Row():
emotion5 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Surprise")
emotion6 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Anger")
emotion7 = gr.Slider(0.0, 1.0, 0.1, 0.05, label="Other")
emotion8 = gr.Slider(0.0, 1.0, 0.2, 0.05, label="Neutral")
with gr.Column():
generate_button = gr.Button("Generate Audio")
output_audio = gr.Audio(label="Generated Audio", type="numpy", autoplay=True)
model_choice.change(
fn=update_ui,
inputs=[model_choice],
outputs=[
text,
language,
speaker_audio,
prefix_audio,
emotion1,
emotion2,
emotion3,
emotion4,
emotion5,
emotion6,
emotion7,
emotion8,
vq_single_slider,
fmax_slider,
pitch_std_slider,
speaking_rate_slider,
dnsmos_slider,
speaker_noised_checkbox,
unconditional_keys,
],
)
# On page load, trigger the same UI refresh
demo.load(
fn=update_ui,
inputs=[model_choice],
outputs=[
text,
language,
speaker_audio,
prefix_audio,
emotion1,
emotion2,
emotion3,
emotion4,
emotion5,
emotion6,
emotion7,
emotion8,
vq_single_slider,
fmax_slider,
pitch_std_slider,
speaking_rate_slider,
dnsmos_slider,
speaker_noised_checkbox,
unconditional_keys,
],
)
# Generate audio on button click
generate_button.click(
fn=generate_audio,
inputs=[
model_choice,
text,
language,
speaker_audio,
prefix_audio,
emotion1,
emotion2,
emotion3,
emotion4,
emotion5,
emotion6,
emotion7,
emotion8,
vq_single_slider,
fmax_slider,
pitch_std_slider,
speaking_rate_slider,
dnsmos_slider,
speaker_noised_checkbox,
cfg_scale_slider,
top_p_slider,
min_k_slider,
min_p_slider,
linear_slider,
confidence_slider,
quadratic_slider,
seed_number,
randomize_seed_toggle,
unconditional_keys,
],
outputs=[output_audio, seed_number],
)
return demo
if __name__ == "__main__":
demo = build_interface()
share = getenv("GRADIO_SHARE", "False").lower() in ("true", "1", "t")
demo.launch(server_name="0.0.0.0", server_port=7860, share=share)
|