File size: 6,619 Bytes
20a5020 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# Based on gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/095b2229ee3a40e379c11f05b94bd6923db63b4b/model.py
import torch
import torch.nn as nn
from torch.nn import functional as F
from zonos.config import BackboneConfig, InferenceParams
def precompute_freqs_cis(seq_len: int, n_elem: int, base: float = 10000) -> torch.Tensor:
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(-1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
def _update_kv_cache(
k: torch.Tensor, v: torch.Tensor, inference_params: InferenceParams, layer_idx: int
) -> torch.Tensor:
"""k/v: (batch_size, seqlen, nheads, head_dim) or (batch_size, 1, nheads, head_dim)"""
assert layer_idx in inference_params.key_value_memory_dict
kv_cache, _ = inference_params.key_value_memory_dict[layer_idx]
# Adjust key and value for inference
batch_start = inference_params.batch_size_offset
batch_end = batch_start + k.shape[0]
sequence_start = inference_params.seqlen_offset
sequence_end = sequence_start + k.shape[1]
assert batch_end <= kv_cache.shape[0]
assert sequence_end <= kv_cache.shape[1]
assert kv_cache is not None
kv_cache[batch_start:batch_end, sequence_start:sequence_end, 0, ...] = k
kv_cache[batch_start:batch_end, sequence_start:sequence_end, 1, ...] = v
return kv_cache[batch_start:batch_end, :sequence_end, ...]
class TorchZonosBackbone(nn.Module):
supported_architectures = ["transformer"]
freqs_cis: torch.Tensor
def __init__(self, config: BackboneConfig):
assert not config.ssm_cfg, "This backbone implementation only supports the Transformer model."
super().__init__()
self.config = config
self.layers = nn.ModuleList(TransformerBlock(config, i) for i in range(config.n_layer))
self.norm_f = nn.LayerNorm(config.d_model, eps=config.norm_epsilon)
def allocate_inference_cache(self, batch_size: int, max_seqlen: int, dtype: torch.dtype = torch.bfloat16):
# TODO: This function should be pure
head_dim = self.config.d_model // self.config.attn_cfg["num_heads"]
self.freqs_cis = precompute_freqs_cis(16384, head_dim)
return {
i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype)
for i, layer in enumerate(self.layers)
}
def forward(self, hidden_states: torch.Tensor, inference_params: InferenceParams) -> torch.Tensor:
input_pos = torch.arange(0, hidden_states.shape[1], device=hidden_states.device)
input_pos = input_pos + inference_params.lengths_per_sample.unsqueeze(-1)
freqs_cis = self.freqs_cis[input_pos].expand(hidden_states.shape[0], -1, -1, -1)
for i, layer in enumerate(self.layers):
hidden_states = layer(hidden_states, inference_params, freqs_cis)
return self.norm_f(hidden_states)
class TransformerBlock(nn.Module):
def __init__(self, config: BackboneConfig, layer_idx: int) -> None:
super().__init__()
self.config = config
self.norm = nn.LayerNorm(config.d_model, eps=config.norm_epsilon)
self.mixer = Attention(config, layer_idx)
self.norm2 = nn.LayerNorm(config.d_model, eps=config.norm_epsilon)
self.mlp = FeedForward(config)
self.num_heads_kv = config.attn_cfg["num_heads_kv"]
self.head_dim = config.d_model // config.attn_cfg["num_heads"]
def allocate_inference_cache(self, batch_size: int, max_seqlen: int, dtype: torch.dtype = torch.bfloat16):
return torch.empty(batch_size, max_seqlen, 2, self.num_heads_kv, self.head_dim, dtype=dtype), None
def forward(self, x: torch.Tensor, inference_params: InferenceParams, freqs_cis: torch.Tensor) -> torch.Tensor:
x = x + self.mixer(self.norm(x), inference_params, freqs_cis)
x = x + self.mlp(self.norm2(x))
return x
class Attention(nn.Module):
def __init__(self, config: BackboneConfig, layer_idx: int):
super().__init__()
self.num_heads = config.attn_cfg["num_heads"]
self.num_heads_kv = config.attn_cfg["num_heads_kv"]
self.head_dim = config.d_model // self.num_heads
self.layer_idx = layer_idx
total_head_dim = (self.num_heads + 2 * self.num_heads_kv) * self.head_dim
self.in_proj = nn.Linear(config.d_model, total_head_dim, bias=False)
self.out_proj = nn.Linear(self.num_heads * self.head_dim, config.d_model, bias=False)
def forward(self, x: torch.Tensor, inference_params: InferenceParams, freqs_cis: torch.Tensor) -> torch.Tensor:
batch_size, seqlen, _ = x.shape
q_size = self.num_heads * self.head_dim
kv_size = self.num_heads_kv * self.head_dim
q, k, v = self.in_proj(x).split([q_size, kv_size, kv_size], dim=-1)
q = q.view(batch_size, seqlen, self.num_heads, self.head_dim)
k = k.view(batch_size, seqlen, self.num_heads_kv, self.head_dim)
v = v.view(batch_size, seqlen, self.num_heads_kv, self.head_dim)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, freqs_cis)
kv = _update_kv_cache(k, v, inference_params, self.layer_idx)
k, v = kv.unbind(dim=-3)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
y = F.scaled_dot_product_attention(q, k, v, is_causal=seqlen > 1, enable_gqa=True)
y = y.transpose(1, 2).contiguous().view(batch_size, seqlen, q_size)
y = self.out_proj(y)
return y
class FeedForward(nn.Module):
def __init__(self, config: BackboneConfig) -> None:
super().__init__()
self.fc1 = nn.Linear(config.d_model, 2 * config.attn_mlp_d_intermediate, bias=False)
self.fc2 = nn.Linear(config.attn_mlp_d_intermediate, config.d_model, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
y, gate = self.fc1(x).chunk(2, dim=-1)
return self.fc2(y * F.silu(gate))
|