File size: 6,619 Bytes
20a5020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Based on gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/095b2229ee3a40e379c11f05b94bd6923db63b4b/model.py
import torch
import torch.nn as nn
from torch.nn import functional as F

from zonos.config import BackboneConfig, InferenceParams


def precompute_freqs_cis(seq_len: int, n_elem: int, base: float = 10000) -> torch.Tensor:
    freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
    t = torch.arange(seq_len, device=freqs.device)
    freqs = torch.outer(t, freqs)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
    cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
    return cache


def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
    xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
    freqs_cis = freqs_cis.view(-1, xshaped.size(1), 1, xshaped.size(3), 2)
    x_out2 = torch.stack(
        [
            xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
            xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
        ],
        -1,
    )

    x_out2 = x_out2.flatten(3)
    return x_out2.type_as(x)


def _update_kv_cache(
    k: torch.Tensor, v: torch.Tensor, inference_params: InferenceParams, layer_idx: int
) -> torch.Tensor:
    """k/v: (batch_size, seqlen, nheads, head_dim) or (batch_size, 1, nheads, head_dim)"""
    assert layer_idx in inference_params.key_value_memory_dict
    kv_cache, _ = inference_params.key_value_memory_dict[layer_idx]
    # Adjust key and value for inference
    batch_start = inference_params.batch_size_offset
    batch_end = batch_start + k.shape[0]
    sequence_start = inference_params.seqlen_offset
    sequence_end = sequence_start + k.shape[1]
    assert batch_end <= kv_cache.shape[0]
    assert sequence_end <= kv_cache.shape[1]
    assert kv_cache is not None
    kv_cache[batch_start:batch_end, sequence_start:sequence_end, 0, ...] = k
    kv_cache[batch_start:batch_end, sequence_start:sequence_end, 1, ...] = v
    return kv_cache[batch_start:batch_end, :sequence_end, ...]


class TorchZonosBackbone(nn.Module):
    supported_architectures = ["transformer"]
    freqs_cis: torch.Tensor

    def __init__(self, config: BackboneConfig):
        assert not config.ssm_cfg, "This backbone implementation only supports the Transformer model."
        super().__init__()
        self.config = config

        self.layers = nn.ModuleList(TransformerBlock(config, i) for i in range(config.n_layer))
        self.norm_f = nn.LayerNorm(config.d_model, eps=config.norm_epsilon)

    def allocate_inference_cache(self, batch_size: int, max_seqlen: int, dtype: torch.dtype = torch.bfloat16):
        # TODO: This function should be pure
        head_dim = self.config.d_model // self.config.attn_cfg["num_heads"]
        self.freqs_cis = precompute_freqs_cis(16384, head_dim)
        return {
            i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype)
            for i, layer in enumerate(self.layers)
        }

    def forward(self, hidden_states: torch.Tensor, inference_params: InferenceParams) -> torch.Tensor:
        input_pos = torch.arange(0, hidden_states.shape[1], device=hidden_states.device)
        input_pos = input_pos + inference_params.lengths_per_sample.unsqueeze(-1)

        freqs_cis = self.freqs_cis[input_pos].expand(hidden_states.shape[0], -1, -1, -1)
        for i, layer in enumerate(self.layers):
            hidden_states = layer(hidden_states, inference_params, freqs_cis)
        return self.norm_f(hidden_states)


class TransformerBlock(nn.Module):
    def __init__(self, config: BackboneConfig, layer_idx: int) -> None:
        super().__init__()
        self.config = config

        self.norm = nn.LayerNorm(config.d_model, eps=config.norm_epsilon)
        self.mixer = Attention(config, layer_idx)
        self.norm2 = nn.LayerNorm(config.d_model, eps=config.norm_epsilon)
        self.mlp = FeedForward(config)

        self.num_heads_kv = config.attn_cfg["num_heads_kv"]
        self.head_dim = config.d_model // config.attn_cfg["num_heads"]

    def allocate_inference_cache(self, batch_size: int, max_seqlen: int, dtype: torch.dtype = torch.bfloat16):
        return torch.empty(batch_size, max_seqlen, 2, self.num_heads_kv, self.head_dim, dtype=dtype), None

    def forward(self, x: torch.Tensor, inference_params: InferenceParams, freqs_cis: torch.Tensor) -> torch.Tensor:
        x = x + self.mixer(self.norm(x), inference_params, freqs_cis)
        x = x + self.mlp(self.norm2(x))
        return x


class Attention(nn.Module):
    def __init__(self, config: BackboneConfig, layer_idx: int):
        super().__init__()
        self.num_heads = config.attn_cfg["num_heads"]
        self.num_heads_kv = config.attn_cfg["num_heads_kv"]
        self.head_dim = config.d_model // self.num_heads
        self.layer_idx = layer_idx

        total_head_dim = (self.num_heads + 2 * self.num_heads_kv) * self.head_dim
        self.in_proj = nn.Linear(config.d_model, total_head_dim, bias=False)
        self.out_proj = nn.Linear(self.num_heads * self.head_dim, config.d_model, bias=False)

    def forward(self, x: torch.Tensor, inference_params: InferenceParams, freqs_cis: torch.Tensor) -> torch.Tensor:
        batch_size, seqlen, _ = x.shape

        q_size = self.num_heads * self.head_dim
        kv_size = self.num_heads_kv * self.head_dim
        q, k, v = self.in_proj(x).split([q_size, kv_size, kv_size], dim=-1)

        q = q.view(batch_size, seqlen, self.num_heads, self.head_dim)
        k = k.view(batch_size, seqlen, self.num_heads_kv, self.head_dim)
        v = v.view(batch_size, seqlen, self.num_heads_kv, self.head_dim)

        q = apply_rotary_emb(q, freqs_cis)
        k = apply_rotary_emb(k, freqs_cis)

        kv = _update_kv_cache(k, v, inference_params, self.layer_idx)
        k, v = kv.unbind(dim=-3)

        q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))

        y = F.scaled_dot_product_attention(q, k, v, is_causal=seqlen > 1, enable_gqa=True)

        y = y.transpose(1, 2).contiguous().view(batch_size, seqlen, q_size)

        y = self.out_proj(y)
        return y


class FeedForward(nn.Module):
    def __init__(self, config: BackboneConfig) -> None:
        super().__init__()
        self.fc1 = nn.Linear(config.d_model, 2 * config.attn_mlp_d_intermediate, bias=False)
        self.fc2 = nn.Linear(config.attn_mlp_d_intermediate, config.d_model, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        y, gate = self.fc1(x).chunk(2, dim=-1)
        return self.fc2(y * F.silu(gate))