File size: 13,290 Bytes
20a5020 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import json
from typing import Callable
import safetensors
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from tqdm import tqdm
from zonos.autoencoder import DACAutoencoder
from zonos.backbone import BACKBONES
from zonos.codebook_pattern import apply_delay_pattern, revert_delay_pattern
from zonos.conditioning import PrefixConditioner
from zonos.config import InferenceParams, ZonosConfig
from zonos.sampling import sample_from_logits
from zonos.speaker_cloning import SpeakerEmbeddingLDA
from zonos.utils import DEFAULT_DEVICE, find_multiple, pad_weight_
DEFAULT_BACKBONE_CLS = next(iter(BACKBONES.values()))
class Zonos(nn.Module):
def __init__(self, config: ZonosConfig, backbone_cls=DEFAULT_BACKBONE_CLS):
super().__init__()
self.config = config
dim = config.backbone.d_model
self.eos_token_id = config.eos_token_id
self.masked_token_id = config.masked_token_id
self.autoencoder = DACAutoencoder()
self.backbone = backbone_cls(config.backbone)
self.prefix_conditioner = PrefixConditioner(config.prefix_conditioner, dim)
self.spk_clone_model = None
# TODO: pad to multiple of at least 8
self.embeddings = nn.ModuleList([nn.Embedding(1026, dim) for _ in range(self.autoencoder.num_codebooks)])
self.heads = nn.ModuleList([nn.Linear(dim, 1025, bias=False) for _ in range(self.autoencoder.num_codebooks)])
self._cg_graph = None
self._cg_batch_size = None
self._cg_input_ids = None
self._cg_logits = None
self._cg_inference_params = None
self._cg_scale = None
if config.pad_vocab_to_multiple_of:
self.register_load_state_dict_post_hook(self._pad_embeddings_and_heads)
def _pad_embeddings_and_heads(self, *args, **kwargs):
for w in [*self.embeddings, *self.heads]:
pad_weight_(w, self.config.pad_vocab_to_multiple_of)
@property
def device(self) -> torch.device:
return next(self.parameters()).device
@classmethod
def from_pretrained(
cls, repo_id: str, revision: str | None = None, device: str = DEFAULT_DEVICE, **kwargs
) -> "Zonos":
config_path = hf_hub_download(repo_id=repo_id, filename="config.json", revision=revision)
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors", revision=revision)
return cls.from_local(config_path, model_path, device, **kwargs)
@classmethod
def from_local(
cls, config_path: str, model_path: str, device: str = DEFAULT_DEVICE, backbone: str | None = None
) -> "Zonos":
config = ZonosConfig.from_dict(json.load(open(config_path)))
if backbone:
backbone_cls = BACKBONES[backbone]
else:
is_transformer = not bool(config.backbone.ssm_cfg)
backbone_cls = DEFAULT_BACKBONE_CLS
# Preferentially route to pure torch backbone for increased performance and lower latency.
if is_transformer and "torch" in BACKBONES:
backbone_cls = BACKBONES["torch"]
model = cls(config, backbone_cls).to(device, torch.bfloat16)
model.autoencoder.dac.to(device)
sd = model.state_dict()
with safetensors.safe_open(model_path, framework="pt") as f:
for k in f.keys():
sd[k] = f.get_tensor(k)
model.load_state_dict(sd)
return model
def make_speaker_embedding(self, wav: torch.Tensor, sr: int) -> torch.Tensor:
"""Generate a speaker embedding from an audio clip."""
if self.spk_clone_model is None:
self.spk_clone_model = SpeakerEmbeddingLDA()
_, spk_embedding = self.spk_clone_model(wav.to(self.spk_clone_model.device), sr)
return spk_embedding.unsqueeze(0).bfloat16()
def embed_codes(self, codes: torch.Tensor) -> torch.Tensor:
return sum(emb(codes[:, i]) for i, emb in enumerate(self.embeddings))
def apply_heads(self, hidden_states: torch.Tensor) -> torch.Tensor:
return torch.stack([head(hidden_states) for head in self.heads], dim=1)
def _compute_logits(
self, hidden_states: torch.Tensor, inference_params: InferenceParams, cfg_scale: float
) -> torch.Tensor:
"""
Pass `hidden_states` into `backbone` and `multi_head`, applying
classifier-free guidance if `cfg_scale != 1.0`.
"""
last_hidden_states = self.backbone(hidden_states, inference_params)[:, -1, :].unsqueeze(1)
logits = self.apply_heads(last_hidden_states).squeeze(2).float()
if cfg_scale != 1.0:
cond_logits, uncond_logits = logits.chunk(2)
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
logits[..., 1025:].fill_(-torch.inf) # ensures padding is ignored
return logits
def _decode_one_token(
self,
input_ids: torch.Tensor,
inference_params: InferenceParams,
cfg_scale: float,
allow_cudagraphs: bool = True,
) -> torch.Tensor:
"""
Single-step decode. Prepares the hidden states, possibly replicates them
for CFG, and then delegates to `_compute_logits`.
Below we wrap this function with a simple CUDA Graph capturing mechanism,
doing 3 warmup steps if needed and then capturing or replaying the graph.
We only recapture if the batch size changes.
"""
# TODO: support cfg_scale==1
if cfg_scale == 1.0:
hidden_states = self.embed_codes(input_ids)
return self._compute_logits(hidden_states, inference_params, cfg_scale)
bsz = input_ids.size(0)
if not allow_cudagraphs or input_ids.device.type != "cuda":
hidden_states_local = self.embed_codes(input_ids)
hidden_states_local = hidden_states_local.repeat(2, 1, 1)
return self._compute_logits(hidden_states_local, inference_params, cfg_scale)
need_capture = (self._cg_graph is None) or (self._cg_batch_size != bsz)
if need_capture:
self._cg_graph = None
self._cg_batch_size = bsz
self._cg_inference_params = inference_params
self._cg_scale = cfg_scale
for _ in range(3):
hidden_states = self.embed_codes(input_ids)
hidden_states = hidden_states.repeat(2, 1, 1) # because cfg != 1.0
logits = self._compute_logits(hidden_states, inference_params, cfg_scale)
self._cg_input_ids = input_ids.clone()
self._cg_logits = torch.empty_like(logits)
g = torch.cuda.CUDAGraph()
def capture_region():
hidden_states_local = self.embed_codes(self._cg_input_ids)
hidden_states_local = hidden_states_local.repeat(2, 1, 1)
self._cg_logits = self._compute_logits(hidden_states_local, self._cg_inference_params, self._cg_scale)
with torch.cuda.graph(g):
capture_region()
self._cg_graph = g
else:
self._cg_input_ids.copy_(input_ids)
self._cg_graph.replay()
return self._cg_logits
def _prefill(
self,
prefix_hidden_states: torch.Tensor,
input_ids: torch.Tensor,
inference_params: InferenceParams,
cfg_scale: float,
) -> torch.Tensor:
"""
"Prefill" mode: we already have `prefix_hidden_states`, and we want
to append new embeddings, then compute the logits.
"""
# Replicate input_ids if CFG is enabled
if cfg_scale != 1.0:
input_ids = input_ids.expand(prefix_hidden_states.shape[0], -1, -1)
hidden_states = torch.cat([prefix_hidden_states, self.embed_codes(input_ids)], dim=1)
return self._compute_logits(hidden_states, inference_params, cfg_scale)
def setup_cache(self, batch_size: int, max_seqlen: int, dtype: torch.dtype = torch.bfloat16) -> InferenceParams:
max_seqlen = find_multiple(max_seqlen, 8)
key_value_memory_dict = self.backbone.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype)
lengths_per_sample = torch.full((batch_size,), 0, dtype=torch.int32)
return InferenceParams(max_seqlen, batch_size, 0, 0, key_value_memory_dict, lengths_per_sample)
def prepare_conditioning(self, cond_dict: dict, uncond_dict: dict | None = None) -> torch.Tensor:
if uncond_dict is None:
uncond_dict = {k: cond_dict[k] for k in self.prefix_conditioner.required_keys}
return torch.cat(
[
self.prefix_conditioner(cond_dict),
self.prefix_conditioner(uncond_dict),
]
)
def can_use_cudagraphs(self) -> bool:
# Only the mamba-ssm backbone supports CUDA Graphs at the moment
return self.device.type == "cuda" and "_mamba_ssm" in str(self.backbone.__class__)
@torch.inference_mode()
def generate(
self,
prefix_conditioning: torch.Tensor, # [bsz, cond_seq_len, d_model]
audio_prefix_codes: torch.Tensor | None = None, # [bsz, 9, prefix_audio_seq_len]
max_new_tokens: int = 86 * 30,
cfg_scale: float = 2.0,
batch_size: int = 1,
sampling_params: dict = dict(min_p=0.1),
progress_bar: bool = True,
disable_torch_compile: bool = False,
callback: Callable[[torch.Tensor, int, int], bool] | None = None,
):
assert cfg_scale != 1, "TODO: add support for cfg_scale=1"
prefix_audio_len = 0 if audio_prefix_codes is None else audio_prefix_codes.shape[2]
device = self.device
# Use CUDA Graphs if supported, and torch.compile otherwise.
cg = self.can_use_cudagraphs()
decode_one_token = self._decode_one_token
decode_one_token = torch.compile(decode_one_token, dynamic=True, disable=cg or disable_torch_compile)
unknown_token = -1
audio_seq_len = prefix_audio_len + max_new_tokens
seq_len = prefix_conditioning.shape[1] + audio_seq_len + 9
with torch.device(device):
inference_params = self.setup_cache(batch_size=batch_size * 2, max_seqlen=seq_len)
codes = torch.full((batch_size, 9, audio_seq_len), unknown_token)
if audio_prefix_codes is not None:
codes[..., :prefix_audio_len] = audio_prefix_codes
delayed_codes = apply_delay_pattern(codes, self.masked_token_id)
delayed_prefix_audio_codes = delayed_codes[..., : prefix_audio_len + 1]
logits = self._prefill(prefix_conditioning, delayed_prefix_audio_codes, inference_params, cfg_scale)
next_token = sample_from_logits(logits, **sampling_params)
offset = delayed_prefix_audio_codes.shape[2]
frame = delayed_codes[..., offset : offset + 1]
frame.masked_scatter_(frame == unknown_token, next_token)
prefix_length = prefix_conditioning.shape[1] + prefix_audio_len + 1
inference_params.seqlen_offset += prefix_length
inference_params.lengths_per_sample[:] += prefix_length
logit_bias = torch.zeros_like(logits)
logit_bias[:, 1:, self.eos_token_id] = -torch.inf # only allow codebook 0 to predict EOS
stopping = torch.zeros(batch_size, dtype=torch.bool, device=device)
max_steps = delayed_codes.shape[2] - offset
remaining_steps = torch.full((batch_size,), max_steps, device=device)
progress = tqdm(total=max_steps, desc="Generating", disable=not progress_bar)
cfg_scale = torch.tensor(cfg_scale)
step = 0
while torch.max(remaining_steps) > 0:
offset += 1
input_ids = delayed_codes[..., offset - 1 : offset]
logits = decode_one_token(input_ids, inference_params, cfg_scale, allow_cudagraphs=cg)
logits += logit_bias
next_token = sample_from_logits(logits, generated_tokens=delayed_codes[..., :offset], **sampling_params)
eos_in_cb0 = next_token[:, 0] == self.eos_token_id
remaining_steps[eos_in_cb0[:, 0]] = torch.minimum(remaining_steps[eos_in_cb0[:, 0]], torch.tensor(9))
stopping |= eos_in_cb0[:, 0]
eos_codebook_idx = 9 - remaining_steps
eos_codebook_idx = torch.clamp(eos_codebook_idx, max=9 - 1)
for i in range(next_token.shape[0]):
if stopping[i]:
idx = eos_codebook_idx[i].item()
next_token[i, :idx] = self.masked_token_id
next_token[i, idx] = self.eos_token_id
frame = delayed_codes[..., offset : offset + 1]
frame.masked_scatter_(frame == unknown_token, next_token)
inference_params.seqlen_offset += 1
inference_params.lengths_per_sample[:] += 1
remaining_steps -= 1
progress.update()
step += 1
if callback is not None and not callback(frame, step, max_steps):
break
out_codes = revert_delay_pattern(delayed_codes)
out_codes.masked_fill_(out_codes >= 1024, 0)
out_codes = out_codes[..., : offset - 9]
self._cg_graph = None # reset cuda graph to avoid cache changes
return out_codes
|