Podcaster / Zonos-main /zonos /conditioning.py
Styner1's picture
Upload 27 files
20a5020 verified
from functools import cache
from typing import Any, Literal, Iterable
import torch
import torch.nn as nn
from zonos.config import PrefixConditionerConfig
from zonos.utils import DEFAULT_DEVICE
class Conditioner(nn.Module):
def __init__(
self,
output_dim: int,
name: str,
cond_dim: int | None = None,
projection: Literal["none", "linear", "mlp"] = "none",
uncond_type: Literal["learned", "none"] = "none",
**kwargs,
):
super().__init__()
self.name = name
self.output_dim = output_dim
self.cond_dim = cond_dim = cond_dim or output_dim
if projection == "linear":
self.project = nn.Linear(cond_dim, output_dim)
elif projection == "mlp":
self.project = nn.Sequential(
nn.Linear(cond_dim, output_dim),
nn.SiLU(),
nn.Linear(output_dim, output_dim),
)
else:
self.project = nn.Identity()
self.uncond_vector = None
if uncond_type == "learned":
self.uncond_vector = nn.Parameter(torch.zeros(output_dim))
def apply_cond(self, *inputs: Any) -> torch.Tensor:
raise NotImplementedError()
def forward(self, inputs: tuple[Any, ...] | None) -> torch.Tensor:
if inputs is None:
assert self.uncond_vector is not None
return self.uncond_vector.data.view(1, 1, -1)
cond = self.apply_cond(*inputs)
cond = self.project(cond)
return cond
# ------- ESPEAK CONTAINMENT ZONE ------------------------------------------------------------------------------------------------------------------------------------------------
import os
import sys
import re
import unicodedata
import inflect
import torch
import torch.nn as nn
from kanjize import number2kanji
from phonemizer.backend import EspeakBackend
from sudachipy import Dictionary, SplitMode
if sys.platform == "darwin":
os.environ["PHONEMIZER_ESPEAK_LIBRARY"] = "/opt/homebrew/lib/libespeak-ng.dylib"
# --- Number normalization code from https://github.com/daniilrobnikov/vits2/blob/main/text/normalize_numbers.py ---
_inflect = inflect.engine()
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
_number_re = re.compile(r"[0-9]+")
def _remove_commas(m: re.Match) -> str:
return m.group(1).replace(",", "")
def _expand_decimal_point(m: re.Match) -> str:
return m.group(1).replace(".", " point ")
def _expand_dollars(m: re.Match) -> str:
match = m.group(1)
parts = match.split(".")
if len(parts) > 2:
return match + " dollars" # Unexpected format
dollars = int(parts[0]) if parts[0] else 0
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents:
dollar_unit = "dollar" if dollars == 1 else "dollars"
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
elif dollars:
dollar_unit = "dollar" if dollars == 1 else "dollars"
return "%s %s" % (dollars, dollar_unit)
elif cents:
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s" % (cents, cent_unit)
else:
return "zero dollars"
def _expand_ordinal(m: re.Match) -> str:
return _inflect.number_to_words(m.group(0))
def _expand_number(m: re.Match) -> str:
num = int(m.group(0))
if num > 1000 and num < 3000:
if num == 2000:
return "two thousand"
elif num > 2000 and num < 2010:
return "two thousand " + _inflect.number_to_words(num % 100)
elif num % 100 == 0:
return _inflect.number_to_words(num // 100) + " hundred"
else:
return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ")
else:
return _inflect.number_to_words(num, andword="")
def normalize_numbers(text: str) -> str:
text = re.sub(_comma_number_re, _remove_commas, text)
text = re.sub(_pounds_re, r"\1 pounds", text)
text = re.sub(_dollars_re, _expand_dollars, text)
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
text = re.sub(_ordinal_re, _expand_ordinal, text)
text = re.sub(_number_re, _expand_number, text)
return text
# --- Number normalization code end ---
PAD_ID, UNK_ID, BOS_ID, EOS_ID = 0, 1, 2, 3
SPECIAL_TOKEN_IDS = [PAD_ID, UNK_ID, BOS_ID, EOS_ID]
_punctuation = ';:,.!?¡¿—…"«»“”() *~-/\\&'
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_letters_ipa = (
"ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
)
symbols = [*_punctuation, *_letters, *_letters_ipa]
_symbol_to_id = {s: i for i, s in enumerate(symbols, start=len(SPECIAL_TOKEN_IDS))}
def _get_symbol_id(s: str) -> int:
return _symbol_to_id.get(s, 1)
def get_symbol_ids(text: str) -> list[int]:
return list(map(_get_symbol_id, text))
def tokenize_phonemes(phonemes: list[str]) -> tuple[torch.Tensor, list[int]]:
phoneme_ids = [[BOS_ID, *get_symbol_ids(phonemes), EOS_ID] for phonemes in phonemes]
lengths = list(map(len, phoneme_ids))
longest = max(lengths)
phoneme_ids = [[PAD_ID] * (longest - len(ids)) + ids for ids in phoneme_ids]
return torch.tensor(phoneme_ids), lengths
def normalize_jp_text(text: str, tokenizer=Dictionary(dict="full").create()) -> str:
text = unicodedata.normalize("NFKC", text)
text = re.sub(r"\d+", lambda m: number2kanji(int(m[0])), text)
final_text = " ".join([x.reading_form() for x in tokenizer.tokenize(text, SplitMode.A)])
return final_text
def clean(texts: list[str], languages: list[str]) -> list[str]:
texts_out = []
for text, language in zip(texts, languages):
if "ja" in language:
text = normalize_jp_text(text)
else:
text = normalize_numbers(text)
texts_out.append(text)
return texts_out
@cache
def get_backend(language: str) -> "EspeakBackend":
import logging
from phonemizer.backend import EspeakBackend
logger = logging.getLogger("phonemizer")
backend = EspeakBackend(
language,
preserve_punctuation=True,
with_stress=True,
punctuation_marks=_punctuation,
logger=logger,
)
logger.setLevel(logging.ERROR)
return backend
def phonemize(texts: list[str], languages: list[str]) -> list[str]:
texts = clean(texts, languages)
batch_phonemes = []
for text, language in zip(texts, languages):
backend = get_backend(language)
phonemes = backend.phonemize([text], strip=True)
batch_phonemes.append(phonemes[0])
return batch_phonemes
class EspeakPhonemeConditioner(Conditioner):
def __init__(self, output_dim: int, **kwargs):
super().__init__(output_dim, **kwargs)
self.phoneme_embedder = nn.Embedding(len(SPECIAL_TOKEN_IDS) + len(symbols), output_dim)
def apply_cond(self, texts: list[str], languages: list[str]) -> torch.Tensor:
"""
Args:
texts: list of texts to convert to phonemes
languages: ISO 639-1 -or otherwise eSpeak compatible- language code
"""
device = self.phoneme_embedder.weight.device
phonemes = phonemize(texts, languages)
phoneme_ids, _ = tokenize_phonemes(phonemes)
phoneme_embeds = self.phoneme_embedder(phoneme_ids.to(device))
return phoneme_embeds
# ------- ESPEAK CONTAINMENT ZONE ------------------------------------------------------------------------------------------------------------------------------------------------
class FourierConditioner(Conditioner):
def __init__(
self,
output_dim: int,
input_dim: int = 1,
std: float = 1.0,
min_val: float = 0.0,
max_val: float = 1.0,
**kwargs,
):
assert output_dim % 2 == 0
super().__init__(output_dim, **kwargs)
self.register_buffer("weight", torch.randn([output_dim // 2, input_dim]) * std)
self.input_dim, self.min_val, self.max_val = input_dim, min_val, max_val
def apply_cond(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[-1] == self.input_dim
x = (x - self.min_val) / (self.max_val - self.min_val) # [batch_size, seq_len, input_dim]
f = 2 * torch.pi * x.to(self.weight.dtype) @ self.weight.T # [batch_size, seq_len, output_dim // 2]
return torch.cat([f.cos(), f.sin()], dim=-1) # [batch_size, seq_len, output_dim]
class IntegerConditioner(Conditioner):
def __init__(self, output_dim: int, min_val: int = 0, max_val: int = 512, **kwargs):
super().__init__(output_dim, **kwargs)
self.min_val = min_val
self.max_val = max_val
self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim)
def apply_cond(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[-1] == 1
return self.int_embedder(x.squeeze(-1) - self.min_val) # [batch_size, seq_len, output_dim]
class PassthroughConditioner(Conditioner):
def __init__(self, output_dim: int, **kwargs):
super().__init__(output_dim, **kwargs)
def apply_cond(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[-1] == self.cond_dim
return x
_cond_cls_map = {
"PassthroughConditioner": PassthroughConditioner,
"EspeakPhonemeConditioner": EspeakPhonemeConditioner,
"FourierConditioner": FourierConditioner,
"IntegerConditioner": IntegerConditioner,
}
def build_conditioners(conditioners: list[dict], output_dim: int) -> list[Conditioner]:
return [_cond_cls_map[config["type"]](output_dim, **config) for config in conditioners]
class PrefixConditioner(Conditioner):
def __init__(self, config: PrefixConditionerConfig, output_dim: int):
super().__init__(output_dim, "prefix", projection=config.projection)
self.conditioners = nn.ModuleList(build_conditioners(config.conditioners, output_dim))
self.norm = nn.LayerNorm(output_dim)
self.required_keys = {c.name for c in self.conditioners if c.uncond_vector is None}
def forward(self, cond_dict: dict) -> torch.Tensor:
if not set(cond_dict).issuperset(self.required_keys):
raise ValueError(f"Missing required keys: {self.required_keys - set(cond_dict)}")
conds = []
for conditioner in self.conditioners:
conds.append(conditioner(cond_dict.get(conditioner.name)))
max_bsz = max(map(len, conds))
assert all(c.shape[0] in (max_bsz, 1) for c in conds)
conds = [c.expand(max_bsz, -1, -1) for c in conds]
return self.norm(self.project(torch.cat(conds, dim=-2)))
supported_language_codes = [
'af', 'am', 'an', 'ar', 'as', 'az', 'ba', 'bg', 'bn', 'bpy', 'bs', 'ca', 'cmn',
'cs', 'cy', 'da', 'de', 'el', 'en-029', 'en-gb', 'en-gb-scotland', 'en-gb-x-gbclan',
'en-gb-x-gbcwmd', 'en-gb-x-rp', 'en-us', 'eo', 'es', 'es-419', 'et', 'eu', 'fa',
'fa-latn', 'fi', 'fr-be', 'fr-ch', 'fr-fr', 'ga', 'gd', 'gn', 'grc', 'gu', 'hak',
'hi', 'hr', 'ht', 'hu', 'hy', 'hyw', 'ia', 'id', 'is', 'it', 'ja', 'jbo', 'ka',
'kk', 'kl', 'kn', 'ko', 'kok', 'ku', 'ky', 'la', 'lfn', 'lt', 'lv', 'mi', 'mk',
'ml', 'mr', 'ms', 'mt', 'my', 'nb', 'nci', 'ne', 'nl', 'om', 'or', 'pa', 'pap',
'pl', 'pt', 'pt-br', 'py', 'quc', 'ro', 'ru', 'ru-lv', 'sd', 'shn', 'si', 'sk',
'sl', 'sq', 'sr', 'sv', 'sw', 'ta', 'te', 'tn', 'tr', 'tt', 'ur', 'uz', 'vi',
'vi-vn-x-central', 'vi-vn-x-south', 'yue'
] # fmt: off
def make_cond_dict(
text: str = "It would be nice to have time for testing, indeed.",
language: str = "en-us",
speaker: torch.Tensor | None = None,
# Emotion vector from 0.0 to 1.0
# Is entangled with pitch_std because more emotion => more pitch variation
# VQScore and DNSMOS because they favor neutral speech
#
# Happiness, Sadness, Disgust, Fear, Surprise, Anger, Other, Neutral
emotion: list[float] = [0.3077, 0.0256, 0.0256, 0.0256, 0.0256, 0.0256, 0.2564, 0.3077],
# Maximum frequency (0 to 24000), should be 22050 or 24000 for 44.1 or 48 kHz audio
# For voice cloning use 22050
fmax: float = 22050.0,
# Standard deviation for pitch (0 to 400), should be
# 20-45 for normal speech,
# 60-150 for expressive speech,
# higher values => crazier samples
pitch_std: float = 20.0,
# Speaking rate in phonemes per minute (0 to 40). 30 is very fast, 10 is slow.
speaking_rate: float = 15.0,
# Target VoiceQualityScore for the generated speech (0.5 to 0.8).
# A list of values must be provided which represent each 1/8th of the audio.
# You should unset for expressive speech.
# According to discord Chat this is only used for the hybrid model
vqscore_8: list[float] = [0.78] * 8,
# CTC target loss
# Only used for the hybrid model
ctc_loss: float = 0.0,
# Only used for the hybrid model
dnsmos_ovrl: float = 4.0,
# Only used for the hybrid model
speaker_noised: bool = False,
unconditional_keys: Iterable[str] = {"vqscore_8", "dnsmos_ovrl"},
device: torch.device | str = DEFAULT_DEVICE,
) -> dict:
"""
A helper to build the 'cond_dict' that the model expects.
By default, it will generate a random speaker embedding
"""
assert language.lower() in supported_language_codes, "Please pick a supported language"
language_code_to_id = {lang: i for i, lang in enumerate(supported_language_codes)}
cond_dict = {
"espeak": ([text], [language]),
"speaker": speaker,
"emotion": emotion,
"fmax": fmax,
"pitch_std": pitch_std,
"speaking_rate": speaking_rate,
"language_id": language_code_to_id[language],
"vqscore_8": vqscore_8,
"ctc_loss": ctc_loss,
"dnsmos_ovrl": dnsmos_ovrl,
"speaker_noised": int(speaker_noised),
}
for k in unconditional_keys:
cond_dict.pop(k, None)
for k, v in cond_dict.items():
if isinstance(v, (float, int, list)):
v = torch.tensor(v)
if isinstance(v, torch.Tensor):
cond_dict[k] = v.view(1, 1, -1).to(device)
if k == "emotion":
cond_dict[k] /= cond_dict[k].sum(dim=-1)
return cond_dict