import torch import torch.nn as nn import torch.nn.functional as F def find_multiple(n: int, k: int) -> int: if k == 0 or n % k == 0: return n return n + k - (n % k) def pad_weight_(w: nn.Embedding | nn.Linear, multiple: int): """Pad the weight of an embedding or linear layer to a multiple of `multiple`.""" if isinstance(w, nn.Embedding): # Pad input dim if w.weight.shape[1] % multiple == 0: return w.weight.data = F.pad(w.weight.data, (0, 0, 0, w.weight.shape[1] % multiple)) w.num_embeddings, w.embedding_dim = w.weight.shape elif isinstance(w, nn.Linear): # Pad output dim if w.weight.shape[0] % multiple == 0: return w.weight.data = F.pad(w.weight.data, (0, 0, 0, w.weight.shape[0] % multiple)) w.out_features, w.in_features = w.weight.shape else: raise ValueError(f"Unsupported weight type: {type(w)}") def get_device() -> torch.device: if torch.cuda.is_available(): return torch.device(torch.cuda.current_device()) # MPS breaks for whatever reason. Uncomment when it's working. # if torch.mps.is_available(): # return torch.device("mps") return torch.device("cpu") DEFAULT_DEVICE = get_device()