Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,37 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
speak("Speech service is unavailable. Please check your internet connection.")
|
39 |
-
return None
|
40 |
-
|
41 |
-
def authenticate():
|
42 |
-
"""Authenticate user based on voice input."""
|
43 |
-
speech_text = recognize_speech()
|
44 |
-
if not speech_text:
|
45 |
-
return False
|
46 |
-
|
47 |
-
# Extract username and password
|
48 |
-
for username, password in USER_CREDENTIALS.items():
|
49 |
-
if username in speech_text and password in speech_text:
|
50 |
-
speak(f"Welcome, {username}. You are now logged in.")
|
51 |
-
return True
|
52 |
-
|
53 |
-
speak("Authentication failed. Please try again.")
|
54 |
-
return False
|
55 |
-
|
56 |
-
if __name__ == "__main__":
|
57 |
-
speak("Welcome to the voice login system.")
|
58 |
-
if authenticate():
|
59 |
-
print("Login Successful!")
|
60 |
-
else:
|
61 |
-
print("Login Failed!")
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
3 |
+
import torch
|
4 |
+
import soundfile as sf
|
5 |
+
|
6 |
+
# Load the processor and model from Hugging Face
|
7 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-xlsr-53")
|
8 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-xlsr-53")
|
9 |
+
|
10 |
+
def transcribe_audio(audio):
|
11 |
+
"""
|
12 |
+
Takes an audio file, processes it using Hugging Face Wav2Vec2 model,
|
13 |
+
and returns the transcribed text.
|
14 |
+
"""
|
15 |
+
# Read the audio file
|
16 |
+
audio_input, _ = sf.read(audio.name)
|
17 |
+
|
18 |
+
# Process audio input
|
19 |
+
input_values = processor(audio_input, return_tensors="pt").input_values
|
20 |
+
|
21 |
+
# Get model logits (raw prediction)
|
22 |
+
logits = model(input_values).logits
|
23 |
+
|
24 |
+
# Decode the prediction into text
|
25 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
26 |
+
transcription = processor.batch_decode(predicted_ids)
|
27 |
+
|
28 |
+
return transcription[0]
|
29 |
+
|
30 |
+
# Create a Gradio interface for users to upload audio files
|
31 |
+
iface = gr.Interface(fn=transcribe_audio,
|
32 |
+
inputs=gr.Audio(source="upload", type="file"),
|
33 |
+
outputs="text",
|
34 |
+
title="Voice Login System",
|
35 |
+
description="Upload an audio file for transcription using Wav2Vec2 model.")
|
36 |
+
|
37 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|