File size: 10,755 Bytes
f8bd4d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch
import torch.nn as nn
from torch.nn import Transformer
from loguru import logger
import os


DEVICE = torch.device("cuda:6" if torch.cuda.is_available() else "cpu")

def get_sinusoid_encoding_table(max_len, d_model):
    pos_encoding = torch.zeros(max_len, d_model)
    position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
    div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))
    pos_encoding[:, 0::2] = torch.sin(position * div_term)
    pos_encoding[:, 1::2] = torch.cos(position * div_term)
    pos_encoding = pos_encoding.unsqueeze(0)
    return nn.Parameter(pos_encoding, requires_grad=False)


class TransformerModel(nn.Module):
    def __init__(self, config, src_tokenizer, tgt_tokenizer):
        super(TransformerModel, self).__init__()
        # 从配置中获取参数
        global DEVICE
        config = config.config
        DEVICE = torch.device(config['DEVICE'])
        self.batch_size = config.get('BATCH_SIZE')
        self.epochs = config.get('EPOCHS')
        self.learning_rate = config.get('LEARNING_RATE')
        self.max_seq_len = config.get('MAX_SEQ_LEN')
        self.d_model = config.get('D_MODEL')
        self.n_head = config.get('N_HEAD')
        self.num_layers = config.get('NUM_LAYERS')
        self.dim_feedforward = config.get('DIM_FEEDFORWARD')
        self.dropout = config.get('DROPOUT')
        self.src_tokenizer = src_tokenizer
        self.tgt_tokenizer = tgt_tokenizer

        self.transformer = Transformer(d_model=self.d_model, 
                                       nhead=self.n_head,
                                       num_encoder_layers=self.num_layers,
                                       num_decoder_layers=self.num_layers,
                                       dim_feedforward=self.dim_feedforward,
                                       dropout = self.dropout
                                       )

        # 这里可以添加一些用于嵌入和最终输出的层,例如
        #self.embedding = nn.Embedding(self.max_seq_len, self.d_model)
        src_vocab_size = len(src_tokenizer.word2int)
        tgt_vocab_size = len(tgt_tokenizer.word2int)
        self.src_embedding = nn.Embedding(src_vocab_size, self.d_model)
        self.tgt_embedding = nn.Embedding(tgt_vocab_size, self.d_model)
        self.fc = nn.Linear(self.d_model, tgt_vocab_size)
        # 添加位置编码
        self.pos_encoding = get_sinusoid_encoding_table(self.max_seq_len, self.d_model)
        self.to(DEVICE)

    def forward(self, src, tgt, src_mask=None, tgt_mask=None, src_padding_mask=None, tgt_padding_mask=None):
        # 对输入进行嵌入
        src_emb = self.src_embedding(src) * (self.d_model ** 0.5)
        tgt_emb = self.tgt_embedding(tgt) * (self.d_model ** 0.5)

        # 添加位置编码
        src_emb = src_emb+ self.pos_encoding[0, :src_emb.size(1)]
        tgt_emb = tgt_emb + self.pos_encoding[0, :tgt_emb.size(1)]

        # 期望src和tgt的形状为 (seq_len, batch_size)
        output = self.transformer(
            src_emb.permute(1, 0, 2),
            tgt_emb.permute(1, 0, 2),
            src_mask=src_mask,
            tgt_mask=tgt_mask,
            src_key_padding_mask=src_padding_mask,
            tgt_key_padding_mask=tgt_padding_mask,
        )
        output = self.fc(output.permute(1, 0, 2))
        return output
    
    def decode_sentence(self, ids):
        int2word = self.tgt_tokenizer.int2word
        word2int = self.tgt_tokenizer.word2int
        tokens = [int2word[id] for id in ids if id not in {word2int["<PAD>"], word2int["<BOS>"], word2int["<EOS>"]}]
        return tokens, " ".join(tokens)  # 中文不需要空格
    
    def encode_sentence(self, sentence):
        tokens = sentence.split()
        
        word2int = self.src_tokenizer.word2int
        max_len = self.max_seq_len
        ids = [word2int.get(token, word2int["<UNK>"]) for token in tokens]
        ids = [word2int["<BOS>"]] + ids[:max_len - 2] + [word2int["<EOS>"]]
        ids += [word2int["<PAD>"]] * (max_len - len(ids))

        return torch.tensor(ids, dtype=torch.long).unsqueeze(0).to(DEVICE)  # 添加 batch 维度
    
    def translate(self, sentence):
        
        
        src_tensor = self.encode_sentence(sentence).to(DEVICE)
        
        tgt_tensor =  tgt_tensor = torch.tensor([self.tgt_tokenizer.word2int["<BOS>"]], dtype=torch.long).unsqueeze(0).to(DEVICE)
        
        for _ in range(self.max_seq_len):
            # 生成目标序列的 mask
            tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_tensor.size(1)).to(DEVICE)

  
            # 推理得到输出
            output = self.forward(src_tensor, tgt_tensor, tgt_mask=tgt_mask)

            # 取最后一个时间步的预测结果
            next_token = output[:, -1, :].argmax(dim=-1).item()

            # 将预测的 token 添加到目标序列中
            tgt_tensor = torch.cat([tgt_tensor, torch.tensor([[next_token]], dtype=torch.long).to(DEVICE)], dim=1)

            # 如果预测到 <EOS>,停止生成
            if next_token == self.tgt_tokenizer.word2int["<EOS>"]:
                break
        return self.decode_sentence(tgt_tensor.squeeze(0).tolist())
    
    
    def translate_no_unk(self, sentence):
        src_tensor = self.encode_sentence(sentence)
        tgt_tensor = torch.tensor([self.tgt_tokenizer.word2int["<BOS>"]], dtype=torch.long).unsqueeze(0).to(DEVICE)

        for _ in range(self.max_seq_len):
            # 生成目标序列的 mask
            tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_tensor.size(1)).to(DEVICE)

            # 推理得到输出
            output = self.forward(src_tensor, tgt_tensor, tgt_mask=tgt_mask)

            # 取最后一个时间步的预测结果
            logits = output[:, -1, :]
            sorted_indices = torch.argsort(logits, dim=-1, descending=True)
            next_token = sorted_indices[0, 0].item()
            unk_id = self.tgt_tokenizer.word2int["<UNK>"]

            # 如果最大概率是 <UNK>,选择概率第二大的 token
            if next_token == unk_id:
                next_token = sorted_indices[0, 1].item()

            # 将预测的 token 添加到目标序列中
            tgt_tensor = torch.cat([tgt_tensor, torch.tensor([[next_token]], dtype=torch.long).to(DEVICE)], dim=1)

            # 如果预测到 <EOS>,停止生成
            if next_token == self.tgt_tokenizer.word2int["<EOS>"]:
                break

        return self.decode_sentence(tgt_tensor.squeeze(0).tolist())
    
    def translate_beam_search(self, sentence, beam_size=3):
        src_tensor = self.encode_sentence(sentence)
        bos_id = self.tgt_tokenizer.word2int["<BOS>"]
        eos_id = self.tgt_tokenizer.word2int["<EOS>"]
        unk_id = self.tgt_tokenizer.word2int["<UNK>"]

        # 初始化 beam
        beams = [([bos_id], 0)]  # (sequence, score)

        for _ in range(self.max_seq_len):
            new_beams = []
            for seq, score in beams:
                tgt_tensor = torch.tensor(seq, dtype=torch.long).unsqueeze(0).to(DEVICE)
                tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_tensor.size(1)).to(DEVICE)

                output = self.forward(src_tensor, tgt_tensor, tgt_mask=tgt_mask)
                logits = output[:, -1, :]
                probs = torch.softmax(logits, dim=-1).squeeze(0)

                sorted_indices = torch.argsort(probs, dim=-1, descending=True)
                top_indices = sorted_indices[:beam_size]

                for idx in top_indices:
                    next_token = idx.item()
                    if next_token == unk_id:
                        continue
                    new_seq = seq + [next_token]
                    new_score = score + torch.log(probs[next_token]).item()
                    new_beams.append((new_seq, new_score))

            # 按分数排序并选择前 beam_size 个
            new_beams.sort(key=lambda x: x[1], reverse=True)
            beams = new_beams[:beam_size]

            # 检查是否有句子以 <EOS> 结尾
            ended_beams = [beam for beam in beams if beam[0][-1] == eos_id]
            if ended_beams:
                best_beam = max(ended_beams, key=lambda x: x[1])
                return self.decode_sentence(best_beam[0])

        # 如果没有以 <EOS> 结尾的句子,选择分数最高的
        best_beam = max(beams, key=lambda x: x[1])
        return self.decode_sentence(best_beam[0])
    
    def translate_no_unk_beam_search(self, sentence, beam_size=3):
        src_tensor = self.encode_sentence(sentence)
        bos_id = self.tgt_tokenizer.word2int["<BOS>"]
        eos_id = self.tgt_tokenizer.word2int["<EOS>"]
        unk_id = self.tgt_tokenizer.word2int["<UNK>"]

        # 初始化 beam
        beams = [([bos_id], 0)]  # (sequence, score)

        for _ in range(self.max_seq_len):
            new_beams = []
            for seq, score in beams:
                tgt_tensor = torch.tensor(seq, dtype=torch.long).unsqueeze(0).to(DEVICE)
                tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_tensor.size(1)).to(DEVICE)

                output = self.forward(src_tensor, tgt_tensor, tgt_mask=tgt_mask)
                logits = output[:, -1, :]
                probs = torch.softmax(logits, dim=-1).squeeze(0)

                sorted_indices = torch.argsort(probs, dim=-1, descending=True)
                top_indices = sorted_indices[:beam_size + 1]  # 多取一个以防第一个是 <UNK>

                valid_count = 0
                for idx in top_indices:
                    next_token = idx.item()
                    if next_token == unk_id:
                        continue
                    new_seq = seq + [next_token]
                    new_score = score + torch.log(probs[next_token]).item()
                    new_beams.append((new_seq, new_score))
                    valid_count += 1
                    if valid_count >= beam_size:
                        break

            # 按分数排序并选择前 beam_size 个
            new_beams.sort(key=lambda x: x[1], reverse=True)
            beams = new_beams[:beam_size]

            # 检查是否有句子以 <EOS> 结尾
            ended_beams = [beam for beam in beams if beam[0][-1] == eos_id]
            if ended_beams:
                best_beam = max(ended_beams, key=lambda x: x[1])
                return self.decode_sentence(best_beam[0])

        # 如果没有以 <EOS> 结尾的句子,选择分数最高的
        best_beam = max(beams, key=lambda x: x[1])
        return self.decode_sentence(best_beam[0])