File size: 10,712 Bytes
f8bd4d2 bda8bc6 f8bd4d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import torch
import torch.nn as nn
from torch.nn import Transformer
from loguru import logger
import os
DEVICE = torch.device("cpu")
def get_sinusoid_encoding_table(max_len, d_model):
pos_encoding = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-torch.log(torch.tensor(10000.0)) / d_model))
pos_encoding[:, 0::2] = torch.sin(position * div_term)
pos_encoding[:, 1::2] = torch.cos(position * div_term)
pos_encoding = pos_encoding.unsqueeze(0)
return nn.Parameter(pos_encoding, requires_grad=False)
class TransformerModel(nn.Module):
def __init__(self, config, src_tokenizer, tgt_tokenizer):
super(TransformerModel, self).__init__()
# 从配置中获取参数
global DEVICE
config = config.config
DEVICE = torch.device(config['DEVICE'])
self.batch_size = config.get('BATCH_SIZE')
self.epochs = config.get('EPOCHS')
self.learning_rate = config.get('LEARNING_RATE')
self.max_seq_len = config.get('MAX_SEQ_LEN')
self.d_model = config.get('D_MODEL')
self.n_head = config.get('N_HEAD')
self.num_layers = config.get('NUM_LAYERS')
self.dim_feedforward = config.get('DIM_FEEDFORWARD')
self.dropout = config.get('DROPOUT')
self.src_tokenizer = src_tokenizer
self.tgt_tokenizer = tgt_tokenizer
self.transformer = Transformer(d_model=self.d_model,
nhead=self.n_head,
num_encoder_layers=self.num_layers,
num_decoder_layers=self.num_layers,
dim_feedforward=self.dim_feedforward,
dropout = self.dropout
)
# 这里可以添加一些用于嵌入和最终输出的层,例如
#self.embedding = nn.Embedding(self.max_seq_len, self.d_model)
src_vocab_size = len(src_tokenizer.word2int)
tgt_vocab_size = len(tgt_tokenizer.word2int)
self.src_embedding = nn.Embedding(src_vocab_size, self.d_model)
self.tgt_embedding = nn.Embedding(tgt_vocab_size, self.d_model)
self.fc = nn.Linear(self.d_model, tgt_vocab_size)
# 添加位置编码
self.pos_encoding = get_sinusoid_encoding_table(self.max_seq_len, self.d_model)
self.to(DEVICE)
def forward(self, src, tgt, src_mask=None, tgt_mask=None, src_padding_mask=None, tgt_padding_mask=None):
# 对输入进行嵌入
src_emb = self.src_embedding(src) * (self.d_model ** 0.5)
tgt_emb = self.tgt_embedding(tgt) * (self.d_model ** 0.5)
# 添加位置编码
src_emb = src_emb+ self.pos_encoding[0, :src_emb.size(1)]
tgt_emb = tgt_emb + self.pos_encoding[0, :tgt_emb.size(1)]
# 期望src和tgt的形状为 (seq_len, batch_size)
output = self.transformer(
src_emb.permute(1, 0, 2),
tgt_emb.permute(1, 0, 2),
src_mask=src_mask,
tgt_mask=tgt_mask,
src_key_padding_mask=src_padding_mask,
tgt_key_padding_mask=tgt_padding_mask,
)
output = self.fc(output.permute(1, 0, 2))
return output
def decode_sentence(self, ids):
int2word = self.tgt_tokenizer.int2word
word2int = self.tgt_tokenizer.word2int
tokens = [int2word[id] for id in ids if id not in {word2int["<PAD>"], word2int["<BOS>"], word2int["<EOS>"]}]
return tokens, " ".join(tokens) # 中文不需要空格
def encode_sentence(self, sentence):
tokens = sentence.split()
word2int = self.src_tokenizer.word2int
max_len = self.max_seq_len
ids = [word2int.get(token, word2int["<UNK>"]) for token in tokens]
ids = [word2int["<BOS>"]] + ids[:max_len - 2] + [word2int["<EOS>"]]
ids += [word2int["<PAD>"]] * (max_len - len(ids))
return torch.tensor(ids, dtype=torch.long).unsqueeze(0).to(DEVICE) # 添加 batch 维度
def translate(self, sentence):
src_tensor = self.encode_sentence(sentence).to(DEVICE)
tgt_tensor = tgt_tensor = torch.tensor([self.tgt_tokenizer.word2int["<BOS>"]], dtype=torch.long).unsqueeze(0).to(DEVICE)
for _ in range(self.max_seq_len):
# 生成目标序列的 mask
tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_tensor.size(1)).to(DEVICE)
# 推理得到输出
output = self.forward(src_tensor, tgt_tensor, tgt_mask=tgt_mask)
# 取最后一个时间步的预测结果
next_token = output[:, -1, :].argmax(dim=-1).item()
# 将预测的 token 添加到目标序列中
tgt_tensor = torch.cat([tgt_tensor, torch.tensor([[next_token]], dtype=torch.long).to(DEVICE)], dim=1)
# 如果预测到 <EOS>,停止生成
if next_token == self.tgt_tokenizer.word2int["<EOS>"]:
break
return self.decode_sentence(tgt_tensor.squeeze(0).tolist())
def translate_no_unk(self, sentence):
src_tensor = self.encode_sentence(sentence)
tgt_tensor = torch.tensor([self.tgt_tokenizer.word2int["<BOS>"]], dtype=torch.long).unsqueeze(0).to(DEVICE)
for _ in range(self.max_seq_len):
# 生成目标序列的 mask
tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_tensor.size(1)).to(DEVICE)
# 推理得到输出
output = self.forward(src_tensor, tgt_tensor, tgt_mask=tgt_mask)
# 取最后一个时间步的预测结果
logits = output[:, -1, :]
sorted_indices = torch.argsort(logits, dim=-1, descending=True)
next_token = sorted_indices[0, 0].item()
unk_id = self.tgt_tokenizer.word2int["<UNK>"]
# 如果最大概率是 <UNK>,选择概率第二大的 token
if next_token == unk_id:
next_token = sorted_indices[0, 1].item()
# 将预测的 token 添加到目标序列中
tgt_tensor = torch.cat([tgt_tensor, torch.tensor([[next_token]], dtype=torch.long).to(DEVICE)], dim=1)
# 如果预测到 <EOS>,停止生成
if next_token == self.tgt_tokenizer.word2int["<EOS>"]:
break
return self.decode_sentence(tgt_tensor.squeeze(0).tolist())
def translate_beam_search(self, sentence, beam_size=3):
src_tensor = self.encode_sentence(sentence)
bos_id = self.tgt_tokenizer.word2int["<BOS>"]
eos_id = self.tgt_tokenizer.word2int["<EOS>"]
unk_id = self.tgt_tokenizer.word2int["<UNK>"]
# 初始化 beam
beams = [([bos_id], 0)] # (sequence, score)
for _ in range(self.max_seq_len):
new_beams = []
for seq, score in beams:
tgt_tensor = torch.tensor(seq, dtype=torch.long).unsqueeze(0).to(DEVICE)
tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_tensor.size(1)).to(DEVICE)
output = self.forward(src_tensor, tgt_tensor, tgt_mask=tgt_mask)
logits = output[:, -1, :]
probs = torch.softmax(logits, dim=-1).squeeze(0)
sorted_indices = torch.argsort(probs, dim=-1, descending=True)
top_indices = sorted_indices[:beam_size]
for idx in top_indices:
next_token = idx.item()
if next_token == unk_id:
continue
new_seq = seq + [next_token]
new_score = score + torch.log(probs[next_token]).item()
new_beams.append((new_seq, new_score))
# 按分数排序并选择前 beam_size 个
new_beams.sort(key=lambda x: x[1], reverse=True)
beams = new_beams[:beam_size]
# 检查是否有句子以 <EOS> 结尾
ended_beams = [beam for beam in beams if beam[0][-1] == eos_id]
if ended_beams:
best_beam = max(ended_beams, key=lambda x: x[1])
return self.decode_sentence(best_beam[0])
# 如果没有以 <EOS> 结尾的句子,选择分数最高的
best_beam = max(beams, key=lambda x: x[1])
return self.decode_sentence(best_beam[0])
def translate_no_unk_beam_search(self, sentence, beam_size=3):
src_tensor = self.encode_sentence(sentence)
bos_id = self.tgt_tokenizer.word2int["<BOS>"]
eos_id = self.tgt_tokenizer.word2int["<EOS>"]
unk_id = self.tgt_tokenizer.word2int["<UNK>"]
# 初始化 beam
beams = [([bos_id], 0)] # (sequence, score)
for _ in range(self.max_seq_len):
new_beams = []
for seq, score in beams:
tgt_tensor = torch.tensor(seq, dtype=torch.long).unsqueeze(0).to(DEVICE)
tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_tensor.size(1)).to(DEVICE)
output = self.forward(src_tensor, tgt_tensor, tgt_mask=tgt_mask)
logits = output[:, -1, :]
probs = torch.softmax(logits, dim=-1).squeeze(0)
sorted_indices = torch.argsort(probs, dim=-1, descending=True)
top_indices = sorted_indices[:beam_size + 1] # 多取一个以防第一个是 <UNK>
valid_count = 0
for idx in top_indices:
next_token = idx.item()
if next_token == unk_id:
continue
new_seq = seq + [next_token]
new_score = score + torch.log(probs[next_token]).item()
new_beams.append((new_seq, new_score))
valid_count += 1
if valid_count >= beam_size:
break
# 按分数排序并选择前 beam_size 个
new_beams.sort(key=lambda x: x[1], reverse=True)
beams = new_beams[:beam_size]
# 检查是否有句子以 <EOS> 结尾
ended_beams = [beam for beam in beams if beam[0][-1] == eos_id]
if ended_beams:
best_beam = max(ended_beams, key=lambda x: x[1])
return self.decode_sentence(best_beam[0])
# 如果没有以 <EOS> 结尾的句子,选择分数最高的
best_beam = max(beams, key=lambda x: x[1])
return self.decode_sentence(best_beam[0])
|