Spaces:
Sleeping
Sleeping
Suchinthana
commited on
Commit
·
778ce34
1
Parent(s):
fa2bf6e
Graph update
Browse files
app.py
CHANGED
@@ -29,17 +29,47 @@ def predict_and_plot(dirty, wait, lastyear, usa):
|
|
29 |
# Predicting on test set for comparison
|
30 |
y_pred = model.predict(X_test)
|
31 |
|
32 |
-
#
|
33 |
-
plt.
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
plt.savefig('output_plot.png')
|
44 |
plt.close()
|
45 |
|
@@ -50,9 +80,9 @@ with gr.Blocks() as demo:
|
|
50 |
gr.Markdown("# Logistic Regression Prediction")
|
51 |
|
52 |
with gr.Row():
|
53 |
-
dirty_slider = gr.Slider(minimum=0, maximum=
|
54 |
-
wait_slider = gr.Slider(minimum=0, maximum=
|
55 |
-
lastyear_slider = gr.Slider(minimum=0, maximum=
|
56 |
usa_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="USA")
|
57 |
|
58 |
predict_button = gr.Button("Predict")
|
|
|
29 |
# Predicting on test set for comparison
|
30 |
y_pred = model.predict(X_test)
|
31 |
|
32 |
+
# Creating subplots for each variable and showing predicted value
|
33 |
+
fig, axs = plt.subplots(2, 2, figsize=(12, 10))
|
34 |
+
|
35 |
+
# Plot dirty variable distribution with predicted value
|
36 |
+
axs[0, 0].hist(X_test[:, 0], bins=30, color='gray', alpha=0.5, label='Dirty Distribution')
|
37 |
+
axs[0, 0].axvline(dirty, color='orange', linestyle='--', label='Input Value (Dirty)')
|
38 |
+
axs[0, 0].axvline(predicted_value, color='red', linestyle='-', label='Predicted Value')
|
39 |
+
axs[0, 0].set_title('Distribution of Dirty')
|
40 |
+
axs[0, 0].set_xlabel('Dirty')
|
41 |
+
axs[0, 0].set_ylabel('Frequency')
|
42 |
+
axs[0, 0].legend()
|
43 |
+
|
44 |
+
# Plot wait variable distribution with predicted value
|
45 |
+
axs[0, 1].hist(X_test[:, 1], bins=30, color='gray', alpha=0.5, label='Wait Distribution')
|
46 |
+
axs[0, 1].axvline(wait, color='orange', linestyle='--', label='Input Value (Wait)')
|
47 |
+
axs[0, 1].axvline(predicted_value, color='red', linestyle='-', label='Predicted Value')
|
48 |
+
axs[0, 1].set_title('Distribution of Wait')
|
49 |
+
axs[0, 1].set_xlabel('Wait')
|
50 |
+
axs[0, 1].set_ylabel('Frequency')
|
51 |
+
axs[0, 1].legend()
|
52 |
+
|
53 |
+
# Plot lastyear variable distribution with predicted value
|
54 |
+
axs[1, 0].hist(X_test[:, 2], bins=30, color='gray', alpha=0.5, label='Lastyear Distribution')
|
55 |
+
axs[1, 0].axvline(lastyear, color='orange', linestyle='--', label='Input Value (Lastyear)')
|
56 |
+
axs[1, 0].axvline(predicted_value, color='red', linestyle='-', label='Predicted Value')
|
57 |
+
axs[1, 0].set_title('Distribution of Lastyear')
|
58 |
+
axs[1, 0].set_xlabel('Lastyear')
|
59 |
+
axs[1, 0].set_ylabel('Frequency')
|
60 |
+
axs[1, 0].legend()
|
61 |
+
|
62 |
+
# Plot usa variable distribution with predicted value
|
63 |
+
axs[1, 1].hist(X_test[:, 3], bins=30, color='gray', alpha=0.5, label='USA Distribution')
|
64 |
+
axs[1, 1].axvline(usa, color='orange', linestyle='--', label='Input Value (USA)')
|
65 |
+
axs[1, 1].axvline(predicted_value, color='red', linestyle='-', label='Predicted Value')
|
66 |
+
axs[1, 1].set_title('Distribution of USA')
|
67 |
+
axs[1, 1].set_xlabel('USA')
|
68 |
+
axs[1, 1].set_ylabel('Frequency')
|
69 |
+
axs[1, 1].legend()
|
70 |
+
|
71 |
+
# Adjust layout and save the plot
|
72 |
+
plt.tight_layout()
|
73 |
plt.savefig('output_plot.png')
|
74 |
plt.close()
|
75 |
|
|
|
80 |
gr.Markdown("# Logistic Regression Prediction")
|
81 |
|
82 |
with gr.Row():
|
83 |
+
dirty_slider = gr.Slider(minimum=0, maximum=6, step=0.01, label="Dirty")
|
84 |
+
wait_slider = gr.Slider(minimum=0, maximum=5.3, step=0.01, label="Wait")
|
85 |
+
lastyear_slider = gr.Slider(minimum=0, maximum=70, step=0.01, label="Last Year")
|
86 |
usa_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="USA")
|
87 |
|
88 |
predict_button = gr.Button("Predict")
|