Spaces:
Runtime error
Runtime error
Suchinthana
commited on
Commit
Β·
8152b02
1
Parent(s):
467d7be
added pydantic, slim prompt
Browse files- app.py +52 -101
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -10,6 +10,8 @@ from staticmap import StaticMap, CircleMarker, Polygon
|
|
| 10 |
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
|
| 11 |
import spaces
|
| 12 |
import logging
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Set up logging
|
| 15 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
@@ -19,6 +21,20 @@ logger = logging.getLogger(__name__)
|
|
| 19 |
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
|
| 20 |
geolocator = Nominatim(user_agent="geoapi")
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# Function to fetch coordinates
|
| 23 |
@spaces.GPU
|
| 24 |
def get_geo_coordinates(location_name):
|
|
@@ -37,43 +53,15 @@ def process_openai_response(query):
|
|
| 37 |
response = openai_client.chat.completions.create(
|
| 38 |
model="gpt-4o-mini",
|
| 39 |
messages=[
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
\
|
| 50 |
-
Handle the following cases:\
|
| 51 |
-
\
|
| 52 |
-
1. **Single (Point) or Multiple Points (MultiPoint)**: Create a point or a list of points for multiple cities.\
|
| 53 |
-
2. **LineString**: Create a line between two cities.\
|
| 54 |
-
3. **Polygon**: Represent an area formed by three or more cities (closed). Example: Cities forming a triangle (A, B, C).\
|
| 55 |
-
4. **MultiPoint, MultiLineString, MultiPolygon, GeometryCollection**: Use as needed based on the question.\
|
| 56 |
-
\
|
| 57 |
-
For example, if asked about cities forming a polygon, create a feature like this:\
|
| 58 |
-
\
|
| 59 |
-
Input: Mark an area with three cities.\
|
| 60 |
-
Output: {\"input\": \"Mark an area with three cities.\", \"output\": {\"answer\": \"The cities A, B, and C form a triangle.\", \"feature_representation\": {\"type\": \"Polygon\", \"cities\": [\"A\", \"B\", \"C\"], \"properties\": {\"description\": \"satelite image of a plantation, green fill, 4k, map, detailed, greenary, plants, vegitation, high contrast\"}}}}\
|
| 61 |
-
\
|
| 62 |
-
Ensure all responses are descriptive and relevant to city names only, without coordinates. **Adhere to given example format always**\
|
| 63 |
-
\"}\"}"
|
| 64 |
-
}
|
| 65 |
-
]
|
| 66 |
-
},
|
| 67 |
-
{
|
| 68 |
-
"role": "user",
|
| 69 |
-
"content": [
|
| 70 |
-
{
|
| 71 |
-
"type": "text",
|
| 72 |
-
"text": query
|
| 73 |
-
}
|
| 74 |
-
]
|
| 75 |
-
}
|
| 76 |
-
],
|
| 77 |
temperature=1,
|
| 78 |
max_tokens=2048,
|
| 79 |
top_p=1,
|
|
@@ -99,48 +87,55 @@ def generate_geojson(response):
|
|
| 99 |
if feature_type == "Polygon":
|
| 100 |
coordinates.append(coordinates[0]) # Close the polygon
|
| 101 |
|
| 102 |
-
|
| 103 |
"type": "FeatureCollection",
|
| 104 |
-
"features": [
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
"
|
| 109 |
-
|
|
|
|
|
|
|
| 110 |
}
|
| 111 |
-
|
| 112 |
}
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
# Generate static map image
|
| 115 |
@spaces.GPU
|
| 116 |
def generate_static_map(geojson_data, invisible=False):
|
| 117 |
-
# Create a static map object with specified dimensions
|
| 118 |
m = StaticMap(600, 600)
|
| 119 |
-
#log the geojson data
|
| 120 |
logger.info(f"GeoJSON data: {geojson_data}")
|
| 121 |
-
|
| 122 |
for feature in geojson_data["features"]:
|
| 123 |
geom_type = feature["geometry"]["type"]
|
| 124 |
coords = feature["geometry"]["coordinates"]
|
| 125 |
|
| 126 |
if geom_type == "Point":
|
| 127 |
-
m.add_marker(CircleMarker((coords[0][0], coords[0][1]), '#1C00ff00' if invisible
|
| 128 |
elif geom_type in ["MultiPoint", "LineString"]:
|
| 129 |
for coord in coords:
|
| 130 |
-
m.add_marker(CircleMarker((coord[0], coord[1]), '#1C00ff00' if invisible
|
| 131 |
elif geom_type in ["Polygon", "MultiPolygon"]:
|
| 132 |
for polygon in coords:
|
| 133 |
-
m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], '#1C00ff00' if invisible
|
| 134 |
-
|
| 135 |
-
return m.render() #zoom=10
|
| 136 |
|
|
|
|
| 137 |
|
| 138 |
# ControlNet pipeline setup
|
| 139 |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
|
| 140 |
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 141 |
"stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
|
| 142 |
)
|
| 143 |
-
# ZeroGPU compatibility
|
| 144 |
pipeline.to('cuda')
|
| 145 |
|
| 146 |
@spaces.GPU
|
|
@@ -164,66 +159,23 @@ def generate_satellite_image(init_image, mask_image, prompt):
|
|
| 164 |
control_image=control_image,
|
| 165 |
strength=0.42,
|
| 166 |
guidance_scale=62
|
| 167 |
-
|
| 168 |
return result.images[0]
|
| 169 |
|
| 170 |
# Gradio UI
|
| 171 |
@spaces.GPU
|
| 172 |
def handle_query(query):
|
| 173 |
-
# Process OpenAI response
|
| 174 |
response = process_openai_response(query)
|
| 175 |
geojson_data = generate_geojson(response)
|
| 176 |
|
| 177 |
-
geojson_data = {
|
| 178 |
-
"type": "FeatureCollection",
|
| 179 |
-
"features": [
|
| 180 |
-
{
|
| 181 |
-
"type": "Feature",
|
| 182 |
-
"properties": {
|
| 183 |
-
"description": "satellite image of the Coconut Triangle region, green fill, 4k, map, detailed, coconut palms, lush vegetation, high contrast"
|
| 184 |
-
},
|
| 185 |
-
"geometry": {
|
| 186 |
-
"type": "Polygon",
|
| 187 |
-
"coordinates": [
|
| 188 |
-
[
|
| 189 |
-
[
|
| 190 |
-
80.364908,
|
| 191 |
-
7.4870464
|
| 192 |
-
],
|
| 193 |
-
[
|
| 194 |
-
79.82933709234904,
|
| 195 |
-
7.981840249999999
|
| 196 |
-
],
|
| 197 |
-
[
|
| 198 |
-
79.91598756451819,
|
| 199 |
-
7.1190247499999995
|
| 200 |
-
],
|
| 201 |
-
[
|
| 202 |
-
80.364908,
|
| 203 |
-
7.4870464
|
| 204 |
-
]
|
| 205 |
-
]
|
| 206 |
-
]
|
| 207 |
-
}
|
| 208 |
-
}
|
| 209 |
-
]
|
| 210 |
-
}
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
# Generate the main map image
|
| 214 |
map_image = generate_static_map(geojson_data)
|
|
|
|
| 215 |
|
| 216 |
-
empty_map_image = generate_static_map(geojson_data, invisible=True) # Empty map with the same bounds
|
| 217 |
-
|
| 218 |
-
# Create the mask
|
| 219 |
difference = np.abs(np.array(map_image.convert("RGB")) - np.array(empty_map_image.convert("RGB")))
|
| 220 |
-
threshold = 10
|
| 221 |
mask = (np.sum(difference, axis=-1) > threshold).astype(np.uint8) * 255
|
| 222 |
|
| 223 |
-
# Convert the mask to a PIL image
|
| 224 |
mask_image = Image.fromarray(mask, mode="L")
|
| 225 |
-
|
| 226 |
-
# Generate the satellite image
|
| 227 |
satellite_image = generate_satellite_image(
|
| 228 |
empty_map_image, mask_image, response['output']['feature_representation']['properties']['description']
|
| 229 |
)
|
|
@@ -238,7 +190,6 @@ query_options = [
|
|
| 238 |
"Due to considerable rainfall in the up- and mid- stream areas of Kala Oya, the Rajanganaya reservoir is now spilling at a rate of 17,000 cubic feet per second, the department said."
|
| 239 |
]
|
| 240 |
|
| 241 |
-
# Gradio interface
|
| 242 |
with gr.Blocks() as demo:
|
| 243 |
with gr.Row():
|
| 244 |
selected_query = gr.Dropdown(label="Select Query", choices=query_options, value=query_options[-1])
|
|
|
|
| 10 |
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
|
| 11 |
import spaces
|
| 12 |
import logging
|
| 13 |
+
from pydantic import BaseModel, ValidationError, Field
|
| 14 |
+
from typing import List, Union
|
| 15 |
|
| 16 |
# Set up logging
|
| 17 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
| 21 |
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
|
| 22 |
geolocator = Nominatim(user_agent="geoapi")
|
| 23 |
|
| 24 |
+
# Define Pydantic models for GeoJSON validation
|
| 25 |
+
class Geometry(BaseModel):
|
| 26 |
+
type: str
|
| 27 |
+
coordinates: Union[List[List[float]], List[List[List[float]]]]
|
| 28 |
+
|
| 29 |
+
class Feature(BaseModel):
|
| 30 |
+
type: str = "Feature"
|
| 31 |
+
properties: dict
|
| 32 |
+
geometry: Geometry
|
| 33 |
+
|
| 34 |
+
class FeatureCollection(BaseModel):
|
| 35 |
+
type: str = "FeatureCollection"
|
| 36 |
+
features: List[Feature]
|
| 37 |
+
|
| 38 |
# Function to fetch coordinates
|
| 39 |
@spaces.GPU
|
| 40 |
def get_geo_coordinates(location_name):
|
|
|
|
| 53 |
response = openai_client.chat.completions.create(
|
| 54 |
model="gpt-4o-mini",
|
| 55 |
messages=[
|
| 56 |
+
{
|
| 57 |
+
"role": "system",
|
| 58 |
+
"content": "You are a skilled assistant answering geographical and historical questions in JSON format."
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"role": "user",
|
| 62 |
+
"content": query
|
| 63 |
+
}
|
| 64 |
+
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
temperature=1,
|
| 66 |
max_tokens=2048,
|
| 67 |
top_p=1,
|
|
|
|
| 87 |
if feature_type == "Polygon":
|
| 88 |
coordinates.append(coordinates[0]) # Close the polygon
|
| 89 |
|
| 90 |
+
geojson_data = {
|
| 91 |
"type": "FeatureCollection",
|
| 92 |
+
"features": [
|
| 93 |
+
{
|
| 94 |
+
"type": "Feature",
|
| 95 |
+
"properties": properties,
|
| 96 |
+
"geometry": {
|
| 97 |
+
"type": feature_type,
|
| 98 |
+
"coordinates": [coordinates] if feature_type == "Polygon" else coordinates
|
| 99 |
+
}
|
| 100 |
}
|
| 101 |
+
]
|
| 102 |
}
|
| 103 |
|
| 104 |
+
# Validate the generated GeoJSON using Pydantic
|
| 105 |
+
try:
|
| 106 |
+
validated_geojson = FeatureCollection(**geojson_data)
|
| 107 |
+
logger.info("GeoJSON validation successful.")
|
| 108 |
+
return validated_geojson.dict()
|
| 109 |
+
except ValidationError as e:
|
| 110 |
+
logger.error(f"GeoJSON validation failed: {e}")
|
| 111 |
+
raise
|
| 112 |
+
|
| 113 |
# Generate static map image
|
| 114 |
@spaces.GPU
|
| 115 |
def generate_static_map(geojson_data, invisible=False):
|
|
|
|
| 116 |
m = StaticMap(600, 600)
|
|
|
|
| 117 |
logger.info(f"GeoJSON data: {geojson_data}")
|
| 118 |
+
|
| 119 |
for feature in geojson_data["features"]:
|
| 120 |
geom_type = feature["geometry"]["type"]
|
| 121 |
coords = feature["geometry"]["coordinates"]
|
| 122 |
|
| 123 |
if geom_type == "Point":
|
| 124 |
+
m.add_marker(CircleMarker((coords[0][0], coords[0][1]), '#1C00ff00' if invisible else 'blue', 1000))
|
| 125 |
elif geom_type in ["MultiPoint", "LineString"]:
|
| 126 |
for coord in coords:
|
| 127 |
+
m.add_marker(CircleMarker((coord[0], coord[1]), '#1C00ff00' if invisible else 'blue', 1000))
|
| 128 |
elif geom_type in ["Polygon", "MultiPolygon"]:
|
| 129 |
for polygon in coords:
|
| 130 |
+
m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], '#1C00ff00' if invisible else 'blue', 3))
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
return m.render()
|
| 133 |
|
| 134 |
# ControlNet pipeline setup
|
| 135 |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
|
| 136 |
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 137 |
"stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
|
| 138 |
)
|
|
|
|
| 139 |
pipeline.to('cuda')
|
| 140 |
|
| 141 |
@spaces.GPU
|
|
|
|
| 159 |
control_image=control_image,
|
| 160 |
strength=0.42,
|
| 161 |
guidance_scale=62
|
| 162 |
+
)
|
| 163 |
return result.images[0]
|
| 164 |
|
| 165 |
# Gradio UI
|
| 166 |
@spaces.GPU
|
| 167 |
def handle_query(query):
|
|
|
|
| 168 |
response = process_openai_response(query)
|
| 169 |
geojson_data = generate_geojson(response)
|
| 170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
map_image = generate_static_map(geojson_data)
|
| 172 |
+
empty_map_image = generate_static_map(geojson_data, invisible=True)
|
| 173 |
|
|
|
|
|
|
|
|
|
|
| 174 |
difference = np.abs(np.array(map_image.convert("RGB")) - np.array(empty_map_image.convert("RGB")))
|
| 175 |
+
threshold = 10
|
| 176 |
mask = (np.sum(difference, axis=-1) > threshold).astype(np.uint8) * 255
|
| 177 |
|
|
|
|
| 178 |
mask_image = Image.fromarray(mask, mode="L")
|
|
|
|
|
|
|
| 179 |
satellite_image = generate_satellite_image(
|
| 180 |
empty_map_image, mask_image, response['output']['feature_representation']['properties']['description']
|
| 181 |
)
|
|
|
|
| 190 |
"Due to considerable rainfall in the up- and mid- stream areas of Kala Oya, the Rajanganaya reservoir is now spilling at a rate of 17,000 cubic feet per second, the department said."
|
| 191 |
]
|
| 192 |
|
|
|
|
| 193 |
with gr.Blocks() as demo:
|
| 194 |
with gr.Row():
|
| 195 |
selected_query = gr.Dropdown(label="Select Query", choices=query_options, value=query_options[-1])
|
requirements.txt
CHANGED
|
@@ -11,4 +11,4 @@ torchvision
|
|
| 11 |
opencv-python
|
| 12 |
torch
|
| 13 |
staticmap
|
| 14 |
-
|
|
|
|
| 11 |
opencv-python
|
| 12 |
torch
|
| 13 |
staticmap
|
| 14 |
+
pydantic
|