Sudipta Nayak commited on
Commit
df6f630
·
1 Parent(s): 6c8b9f2

no message

Browse files
app/Hackathon_setup/face_recognition.py CHANGED
@@ -112,14 +112,23 @@ def get_face_class(img1):
112
  ##Hint: you need a classifier finetuned for your classes, it takes o/p of siamese as i/p to it
113
  ##Better Hint: Siamese experiment is covered in one of the labs
114
 
 
 
 
 
 
 
 
 
 
115
  feature_net = SiameseNetwork() #Example Network
116
  feature_net = feature_net.to(device)
117
  current_path = 'app/Hackathon_setup'
118
  model = torch.load(current_path + '/siamese_model_recog.t7', map_location=device)
119
  feature_net.load_state_dict(model['net_dict'])
120
 
121
- output1 = feature_net.forward_once(det_img1)
122
- probabilities = torch.softmax(outputs, dim=1)
123
  predicted_class = torch.argmax(probabilities, dim=1).item()
124
 
125
  return predicted_class
 
112
  ##Hint: you need a classifier finetuned for your classes, it takes o/p of siamese as i/p to it
113
  ##Better Hint: Siamese experiment is covered in one of the labs
114
 
115
+ transform = transforms.Compose([
116
+ transforms.Resize((100, 100)), # Resize the image to the desired size
117
+ transforms.ToTensor(), # Convert the image to a PyTorch tensor
118
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # Normalize if needed
119
+ ])
120
+
121
+ # Apply the transformations to the image
122
+ det_img1_tensor = transform(image)
123
+
124
  feature_net = SiameseNetwork() #Example Network
125
  feature_net = feature_net.to(device)
126
  current_path = 'app/Hackathon_setup'
127
  model = torch.load(current_path + '/siamese_model_recog.t7', map_location=device)
128
  feature_net.load_state_dict(model['net_dict'])
129
 
130
+ output1 = feature_net.forward_once(det_img1_tensor)
131
+ probabilities = torch.softmax(output1, dim=1)
132
  predicted_class = torch.argmax(probabilities, dim=1).item()
133
 
134
  return predicted_class