Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,22 +5,21 @@ import pandas as pd
|
|
5 |
from sklearn.preprocessing import LabelEncoder, PolynomialFeatures
|
6 |
|
7 |
def preprocess_input(input_data):
|
8 |
-
#
|
9 |
if not isinstance(input_data, pd.DataFrame):
|
10 |
input_data = pd.DataFrame([input_data])
|
11 |
|
12 |
-
#
|
13 |
label_encoder = LabelEncoder()
|
14 |
input_data['cbwd'] = label_encoder.fit_transform(input_data['cbwd'])
|
15 |
|
16 |
-
#
|
17 |
input_data['season'] = input_data['month'].apply(lambda x: (x % 12 + 3) // 3)
|
18 |
input_data['day_of_week'] = pd.to_datetime(input_data[['year', 'month', 'day']]).dt.dayofweek
|
19 |
input_data['is_weekend'] = input_data['day_of_week'].apply(lambda x: 1 if x >= 5 else 0)
|
20 |
input_data['TEMP_Iws'] = input_data['TEMP'] * input_data['Iws']
|
21 |
input_data['DEWP_PRES'] = input_data['DEWP'] * input_data['PRES']
|
22 |
|
23 |
-
# Polynomial features
|
24 |
poly = PolynomialFeatures(degree=2, include_bias=False)
|
25 |
poly_features = poly.fit_transform(input_data[['DEWP', 'TEMP', 'PRES', 'Iws']])
|
26 |
poly_feature_names = poly.get_feature_names_out(['DEWP', 'TEMP', 'PRES', 'Iws'])
|
@@ -28,18 +27,17 @@ def preprocess_input(input_data):
|
|
28 |
|
29 |
input_data = pd.concat([input_data, poly_df], axis=1)
|
30 |
|
31 |
-
#
|
32 |
features = ['year', 'month', 'day', 'hour', 'DEWP', 'TEMP', 'PRES', 'cbwd', 'Iws', 'Is', 'Ir',
|
33 |
'season', 'day_of_week', 'is_weekend', 'TEMP_Iws', 'DEWP_PRES'] + list(poly_feature_names)
|
34 |
|
35 |
return input_data[features]
|
36 |
|
37 |
-
#
|
38 |
model = joblib.load('random_forest_predictor_pipeline_model.pkl')
|
39 |
|
40 |
-
st.title('PM2.5 Prediction
|
41 |
|
42 |
-
# Create input fields for all required features
|
43 |
year = st.number_input('Year', min_value=2000, max_value=2050, value=2024)
|
44 |
month = st.number_input('Month', min_value=1, max_value=12, value=1)
|
45 |
day = st.number_input('Day', min_value=1, max_value=31, value=1)
|
@@ -53,17 +51,15 @@ Is = st.number_input('Is', value=0.0)
|
|
53 |
Ir = st.number_input('Ir', value=0.0)
|
54 |
|
55 |
if st.button('Predict PM2.5'):
|
56 |
-
#
|
57 |
input_data = {
|
58 |
'year': year, 'month': month, 'day': day, 'hour': hour,
|
59 |
'DEWP': DEWP, 'TEMP': TEMP, 'PRES': PRES, 'cbwd': cbwd,
|
60 |
'Iws': Iws, 'Is': Is, 'Ir': Ir
|
61 |
}
|
62 |
|
63 |
-
#
|
64 |
processed_input = preprocess_input(input_data)
|
65 |
-
|
66 |
-
# Make prediction
|
67 |
prediction = model.predict(processed_input)
|
68 |
|
69 |
st.success(f'The predicted PM2.5 value is: {prediction[0]:.2f}')
|
|
|
5 |
from sklearn.preprocessing import LabelEncoder, PolynomialFeatures
|
6 |
|
7 |
def preprocess_input(input_data):
|
8 |
+
#konvert input ke df
|
9 |
if not isinstance(input_data, pd.DataFrame):
|
10 |
input_data = pd.DataFrame([input_data])
|
11 |
|
12 |
+
#Pake label encoder
|
13 |
label_encoder = LabelEncoder()
|
14 |
input_data['cbwd'] = label_encoder.fit_transform(input_data['cbwd'])
|
15 |
|
16 |
+
#fitur engineering
|
17 |
input_data['season'] = input_data['month'].apply(lambda x: (x % 12 + 3) // 3)
|
18 |
input_data['day_of_week'] = pd.to_datetime(input_data[['year', 'month', 'day']]).dt.dayofweek
|
19 |
input_data['is_weekend'] = input_data['day_of_week'].apply(lambda x: 1 if x >= 5 else 0)
|
20 |
input_data['TEMP_Iws'] = input_data['TEMP'] * input_data['Iws']
|
21 |
input_data['DEWP_PRES'] = input_data['DEWP'] * input_data['PRES']
|
22 |
|
|
|
23 |
poly = PolynomialFeatures(degree=2, include_bias=False)
|
24 |
poly_features = poly.fit_transform(input_data[['DEWP', 'TEMP', 'PRES', 'Iws']])
|
25 |
poly_feature_names = poly.get_feature_names_out(['DEWP', 'TEMP', 'PRES', 'Iws'])
|
|
|
27 |
|
28 |
input_data = pd.concat([input_data, poly_df], axis=1)
|
29 |
|
30 |
+
#pilih fitur buat prediksi
|
31 |
features = ['year', 'month', 'day', 'hour', 'DEWP', 'TEMP', 'PRES', 'cbwd', 'Iws', 'Is', 'Ir',
|
32 |
'season', 'day_of_week', 'is_weekend', 'TEMP_Iws', 'DEWP_PRES'] + list(poly_feature_names)
|
33 |
|
34 |
return input_data[features]
|
35 |
|
36 |
+
#loading model
|
37 |
model = joblib.load('random_forest_predictor_pipeline_model.pkl')
|
38 |
|
39 |
+
st.title('Beijing PM2.5 Prediction')
|
40 |
|
|
|
41 |
year = st.number_input('Year', min_value=2000, max_value=2050, value=2024)
|
42 |
month = st.number_input('Month', min_value=1, max_value=12, value=1)
|
43 |
day = st.number_input('Day', min_value=1, max_value=31, value=1)
|
|
|
51 |
Ir = st.number_input('Ir', value=0.0)
|
52 |
|
53 |
if st.button('Predict PM2.5'):
|
54 |
+
#tombol buat inp
|
55 |
input_data = {
|
56 |
'year': year, 'month': month, 'day': day, 'hour': hour,
|
57 |
'DEWP': DEWP, 'TEMP': TEMP, 'PRES': PRES, 'cbwd': cbwd,
|
58 |
'Iws': Iws, 'Is': Is, 'Ir': Ir
|
59 |
}
|
60 |
|
61 |
+
#prediksi inputnya
|
62 |
processed_input = preprocess_input(input_data)
|
|
|
|
|
63 |
prediction = model.predict(processed_input)
|
64 |
|
65 |
st.success(f'The predicted PM2.5 value is: {prediction[0]:.2f}')
|