Suduk commited on
Commit
30da874
·
verified ·
1 Parent(s): 93da8fb

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -0
app.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import joblib
4
+ import pandas as pd
5
+ from sklearn.preprocessing import LabelEncoder, PolynomialFeatures
6
+
7
+ def preprocess_input(input_data):
8
+ # Convert input_data to DataFrame if it's not already
9
+ if not isinstance(input_data, pd.DataFrame):
10
+ input_data = pd.DataFrame([input_data])
11
+
12
+ # Label encoding for 'cbwd'
13
+ label_encoder = LabelEncoder()
14
+ input_data['cbwd'] = label_encoder.fit_transform(input_data['cbwd'])
15
+
16
+ # Feature engineering
17
+ input_data['season'] = input_data['month'].apply(lambda x: (x % 12 + 3) // 3)
18
+ input_data['day_of_week'] = pd.to_datetime(input_data[['year', 'month', 'day']]).dt.dayofweek
19
+ input_data['is_weekend'] = input_data['day_of_week'].apply(lambda x: 1 if x >= 5 else 0)
20
+ input_data['TEMP_Iws'] = input_data['TEMP'] * input_data['Iws']
21
+ input_data['DEWP_PRES'] = input_data['DEWP'] * input_data['PRES']
22
+
23
+ # Polynomial features
24
+ poly = PolynomialFeatures(degree=2, include_bias=False)
25
+ poly_features = poly.fit_transform(input_data[['DEWP', 'TEMP', 'PRES', 'Iws']])
26
+ poly_feature_names = poly.get_feature_names_out(['DEWP', 'TEMP', 'PRES', 'Iws'])
27
+ poly_df = pd.DataFrame(poly_features, columns=poly_feature_names, index=input_data.index)
28
+
29
+ input_data = pd.concat([input_data, poly_df], axis=1)
30
+
31
+ # Select features for prediction
32
+ features = ['year', 'month', 'day', 'hour', 'DEWP', 'TEMP', 'PRES', 'cbwd', 'Iws', 'Is', 'Ir',
33
+ 'season', 'day_of_week', 'is_weekend', 'TEMP_Iws', 'DEWP_PRES'] + list(poly_feature_names)
34
+
35
+ return input_data[features]
36
+
37
+ # Load the saved model
38
+ model = joblib.load('random_forest_predictor_pipeline_model.pkl')
39
+
40
+ st.title('PM2.5 Prediction App')
41
+
42
+ # Create input fields for all required features
43
+ year = st.number_input('Year', min_value=2000, max_value=2050, value=2024)
44
+ month = st.number_input('Month', min_value=1, max_value=12, value=1)
45
+ day = st.number_input('Day', min_value=1, max_value=31, value=1)
46
+ hour = st.number_input('Hour', min_value=0, max_value=23, value=0)
47
+ DEWP = st.number_input('DEWP', value=0.0)
48
+ TEMP = st.number_input('TEMP', value=0.0)
49
+ PRES = st.number_input('PRES', value=1000.0)
50
+ cbwd = st.selectbox('cbwd', ['NE', 'SE', 'NW', 'cv'])
51
+ Iws = st.number_input('Iws', value=0.0)
52
+ Is = st.number_input('Is', value=0.0)
53
+ Ir = st.number_input('Ir', value=0.0)
54
+
55
+ if st.button('Predict PM2.5'):
56
+ # Create a dictionary with the input values
57
+ input_data = {
58
+ 'year': year, 'month': month, 'day': day, 'hour': hour,
59
+ 'DEWP': DEWP, 'TEMP': TEMP, 'PRES': PRES, 'cbwd': cbwd,
60
+ 'Iws': Iws, 'Is': Is, 'Ir': Ir
61
+ }
62
+
63
+ # Preprocess the input data
64
+ processed_input = preprocess_input(input_data)
65
+
66
+ # Make prediction
67
+ prediction = model.predict(processed_input)
68
+
69
+ st.success(f'The predicted PM2.5 value is: {prediction[0]:.2f}')
70
+
71
+