Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B") | |
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B") | |
def generate_text(prompt, max_length=150): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1, do_sample=True) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
def generate_argument(topic, stance): | |
prompt = f"Generate a compelling argument for the following debate topic.\nTopic: {topic}\nStance: {stance}\nArgument:" | |
response = generate_text(prompt, max_length=200) | |
argument = response.split("Argument:")[1].strip() | |
return argument | |
def generate_counterargument(topic, original_argument): | |
prompt = f"Generate a strong counterargument for the following debate topic and argument.\nTopic: {topic}\nOriginal Argument: {original_argument}\nCounterargument:" | |
response = generate_text(prompt, max_length=200) | |
counterargument = response.split("Counterargument:")[1].strip() | |
return counterargument | |
def debate_assistant(topic, stance): | |
argument = generate_argument(topic, stance) | |
counterargument = generate_counterargument(topic, argument) | |
return f"Argument: {argument}\n\nCounterargument: {counterargument}" | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=debate_assistant, | |
inputs=[ | |
gr.Textbox(label="Debate Topic"), | |
gr.Radio(["For", "Against"], label="Stance") | |
], | |
outputs=gr.Textbox(label="Generated Debate Arguments"), | |
title="AI-powered Debate Assistant (Meta-Llama 3.1)", | |
description="Enter a debate topic and choose a stance to generate arguments and counterarguments using Meta-Llama 3.1." | |
) | |
# Launch the interface | |
iface.launch() |