File size: 1,046 Bytes
3d089cc
f5e33dc
 
3d089cc
ea18f0f
 
 
f5e33dc
ea18f0f
f5e33dc
 
 
3d089cc
7bc4b50
 
 
f5e33dc
7bc4b50
 
6ed91c2
3d089cc
6ed91c2
 
7bc4b50
6ed91c2
f5e33dc
7bc4b50
6ed91c2
3d089cc
7bc4b50
3d089cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login

# Initialize the Hugging Face token
token = 'hf_your_actual_token_here'
login(token=token)

# Initialize the text generation pipeline
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

# Define the function to handle chat
def chat(message):
    # Generate the response using the model
    response = pipe(message, max_length=50)
    # Extract and return the generated text
    return response[0]['generated_text']

# Create the Gradio interface
interface = gr.Interface(
    fn=chat,
    inputs=gr.inputs.Textbox(label="Enter your message"),
    outputs="text",
    title="Text Generation Bot",
    description="Chat with the Mistral-7B-Instruct model to get responses to your queries."
)

# Launch the Gradio interface
interface.launch()