Bootcamp_Asg / app.py
Suhaib-27's picture
Update app.py
1d9d30f verified
import streamlit as st
from datasets import load_dataset
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoTokenizer
from transformers import GenerationConfig
huggingface_dataset_name = "dshihk/llm-generated-essay"
dataset = load_dataset(huggingface_dataset_name)
model_name = 'google/flan-t5-base'
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
# get the topic
topic = st.text_area("Enter your desired Topic of Blog")
if topic:
# Configurations
# generation_config = GenerationConfig(max_new_tokens=1000, do_sample=True, temperature=0.7)
generation_config = GenerationConfig(max_new_tokens=50)
# Encode input:
inputs_encoded = tokenizer(topic, return_tensors='pt')
# Model Output:
model_output = model.generate(inputs_encoded["input_ids"], generation_config=generation_config)[0]
# Decode the output
zero_output = tokenizer.decode(model_output, skip_special_tokens=True)
st.write(zero_output)