Spaces:
Sleeping
Sleeping
File size: 5,115 Bytes
cf4a8a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import os
import google.generativeai as genai
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain.prompts import PromptTemplate
import json
import re
from Classes.Helper_Class import DB_Retriever
from typing import Optional
os.environ["GOOGLE_API_KEY"] = "AIzaSyBoghqvvnMMS4bA61LjQkkPNdIRetqk438"
genai.configure(api_key="AIzaSyBoghqvvnMMS4bA61LjQkkPNdIRetqk438")
class OWiki:
def __init__(self,**kwargs):
temperature = kwargs['temperature']
self.summary = kwargs['summary_length']
model = kwargs["model"]
self.db_loc = kwargs["db_loc"]
self.llm = ChatGoogleGenerativeAI(model=model,
temperature=temperature)
self.model_embedding = kwargs['model_embeddings']
def get_summary_template(self):
prompt = """Generate a summary for the following conversational data in less than {summary} lines.\nText:\n{text}\n\nSummary:"""
prompt_template = PromptTemplate(template = prompt,input_variables=['summary','text'])
return prompt_template
def create_sql_prompt_template(self,schemas):
prompt = """Write an SQL query for the following questions whose schemas are as follows.\nSQL Schema:"""
for table_name,table_schema in schemas.items():
prompt+= f"Table Name: {table_name}, Schema : {table_schema}\n\n"
prompt+= """\n\nQuestion:{question}\n\nAnswer:"""
prompt_template = PromptTemplate(template = prompt,input_variables=['question'])
return prompt_template
def create_prompt_for_OIC_bot(self):
template = """You are OIC(Oracle Integration Cloud) Bot.Follow chat instructions and answer the question based only on the following
Chat_instructions:
1. Response must contain Question Explaination along with Potential Solution Headings.
2. Response must contain all possible Error Scenarios if applicable along with a Summary Heading containing breif summary at the end.
Context:
{context}
Question: {question}
"""
prompt = PromptTemplate.from_template(template)
return prompt
def create_sql_agent(self,question,schemas):
prompt_template = self.create_sql_prompt_template(schemas)
chain = prompt_template | self.llm | StrOutputParser()
response = chain.invoke({"question":question})
response = self.format_llm_response(response)
return response
def generate_summary(self,text):
prompt_template = self.get_summary_template()
chain = prompt_template | self.llm | StrOutputParser()
response = chain.invoke({"text":text,"summary":self.summary})
return response
def format_llm_response(self,text):
bold_pattern = r"\*\*(.*?)\*\*"
italic_pattern = r"\*(.*?)\*"
code_pattern = r"```(.*?)```"
text = text.replace('\n', '<br>')
formatted_text = re.sub(code_pattern,"<pre><code>\\1</code></pre>",text)
formatted_text = re.sub(bold_pattern, "<b>\\1</b>", formatted_text)
formatted_text = re.sub(italic_pattern, "<i>\\1</i>", formatted_text)
return formatted_text
def search_from_db(self, query : str, chat_history : Optional[str] ) -> str :
db = DB_Retriever(self.db_loc,self.model_embedding)
retriever = db.retrieve(query)
prompt = self.create_prompt_for_OIC_bot()
chat_history = self.generate_summary(chat_history)
retrieval_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| self.llm
| StrOutputParser()
)
response = retrieval_chain.invoke(query)
# response = self.format_llm_response(response)
return response
if __name__=="__main__":
with open("src/config.json",'r') as f:
hyperparameters = json.load(f)
a = OWiki(**hyperparameters)
# print(a.generate_summary("""User:What is ML?\nBot:Machine learning (ML) is a branch of
# and computer science that focuses on the using data and algorithms to enable AI to imitate the way that humans learn, gradually improving its accuracy.
# How does machine learning work?
# (link resides outside ibm.com) breaks out the learning system of a machine learning algorithm into three main parts.\nUser:How to integrate with Oracle\nUser:Explain what have you explained above\nBot:"""))
# print("*"*100)
# hyperparameters = {"User":" id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT NOT NULL, email TEXT UNIQUE","User1":" id1 INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT NOT NULL, email TEXT UNIQUE"}
# print(a.create_sql_agent("Filter out common values in table 1 and 2 based on id",**hyperparameters))
print(a.search_from_db("What is Machine Learning","You can answer out of context as well")) |