Spaces:
Sleeping
Sleeping
import os | |
import google.generativeai as genai | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_community.vectorstores import FAISS | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain.prompts import PromptTemplate | |
import json | |
import re | |
from Classes.Helper_Class import DB_Retriever | |
from typing import Optional | |
os.environ["GOOGLE_API_KEY"] = "AIzaSyBoghqvvnMMS4bA61LjQkkPNdIRetqk438" | |
genai.configure(api_key="AIzaSyBoghqvvnMMS4bA61LjQkkPNdIRetqk438") | |
class OWiki: | |
def __init__(self,**kwargs): | |
temperature = kwargs['temperature'] | |
self.summary = kwargs['summary_length'] | |
model = kwargs["model"] | |
self.db_loc = kwargs["db_loc"] | |
self.llm = ChatGoogleGenerativeAI(model=model, | |
temperature=temperature) | |
self.model_embedding = kwargs['model_embeddings'] | |
def get_summary_template(self): | |
prompt = """Generate a summary for the following conversational data in less than {summary} lines.\nText:\n{text}\n\nSummary:""" | |
prompt_template = PromptTemplate(template = prompt,input_variables=['summary','text']) | |
return prompt_template | |
def create_sql_prompt_template(self,schemas): | |
prompt = """Write an SQL query for the following questions whose schemas are as follows.\nSQL Schema:""" | |
for table_name,table_schema in schemas.items(): | |
prompt+= f"Table Name: {table_name}, Schema : {table_schema}\n\n" | |
prompt+= """\n\nQuestion:{question}\n\nAnswer:""" | |
prompt_template = PromptTemplate(template = prompt,input_variables=['question']) | |
return prompt_template | |
def create_prompt_for_OIC_bot(self): | |
template = """You are OIC(Oracle Integration Cloud) Bot.Follow chat instructions and answer the question based only on the following | |
Chat_instructions: | |
1. Response must contain Question Explaination along with Potential Solution Headings. | |
2. Response must contain all possible Error Scenarios if applicable along with a Summary Heading containing breif summary at the end. | |
Context: | |
{context} | |
Question: {question} | |
""" | |
prompt = PromptTemplate.from_template(template) | |
return prompt | |
def create_sql_agent(self,question,schemas): | |
prompt_template = self.create_sql_prompt_template(schemas) | |
chain = prompt_template | self.llm | StrOutputParser() | |
response = chain.invoke({"question":question}) | |
response = self.format_llm_response(response) | |
return response | |
def generate_summary(self,text): | |
prompt_template = self.get_summary_template() | |
chain = prompt_template | self.llm | StrOutputParser() | |
response = chain.invoke({"text":text,"summary":self.summary}) | |
return response | |
def format_llm_response(self,text): | |
bold_pattern = r"\*\*(.*?)\*\*" | |
italic_pattern = r"\*(.*?)\*" | |
code_pattern = r"```(.*?)```" | |
text = text.replace('\n', '<br>') | |
formatted_text = re.sub(code_pattern,"<pre><code>\\1</code></pre>",text) | |
formatted_text = re.sub(bold_pattern, "<b>\\1</b>", formatted_text) | |
formatted_text = re.sub(italic_pattern, "<i>\\1</i>", formatted_text) | |
return formatted_text | |
def search_from_db(self, query : str, chat_history : Optional[str] ) -> str : | |
db = DB_Retriever(self.db_loc,self.model_embedding) | |
retriever = db.retrieve(query) | |
prompt = self.create_prompt_for_OIC_bot() | |
chat_history = self.generate_summary(chat_history) | |
retrieval_chain = ( | |
{"context": retriever, "question": RunnablePassthrough()} | |
| prompt | |
| self.llm | |
| StrOutputParser() | |
) | |
response = retrieval_chain.invoke(query) | |
# response = self.format_llm_response(response) | |
return response | |
if __name__=="__main__": | |
with open("src/config.json",'r') as f: | |
hyperparameters = json.load(f) | |
a = OWiki(**hyperparameters) | |
# print(a.generate_summary("""User:What is ML?\nBot:Machine learning (ML) is a branch of | |
# and computer science that focuses on the using data and algorithms to enable AI to imitate the way that humans learn, gradually improving its accuracy. | |
# How does machine learning work? | |
# (link resides outside ibm.com) breaks out the learning system of a machine learning algorithm into three main parts.\nUser:How to integrate with Oracle\nUser:Explain what have you explained above\nBot:""")) | |
# print("*"*100) | |
# hyperparameters = {"User":" id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT NOT NULL, email TEXT UNIQUE","User1":" id1 INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT NOT NULL, email TEXT UNIQUE"} | |
# print(a.create_sql_agent("Filter out common values in table 1 and 2 based on id",**hyperparameters)) | |
print(a.search_from_db("What is Machine Learning","You can answer out of context as well")) |