Spaces:
Sleeping
Sleeping
import gradio as gr | |
import warnings | |
import src.utils as utils | |
from src.predict import prediction | |
from src.logger import get_logger | |
logger = get_logger(__name__) | |
warnings.filterwarnings("ignore") | |
# utils.copy_builder() | |
def show_processing_text(): | |
return gr.update(visible=True), gr.update(visible=False) | |
def prediction_with_loading(image, longitude, latitude, cloud_cover, evapotranspiration, precipitation, min_temp, mean_temp, max_temp, vapour_pressure, wet_day_freq): | |
try: | |
logger.info("Starting prediction process...") | |
response = prediction( | |
image, longitude, latitude, cloud_cover, evapotranspiration, | |
precipitation, min_temp, mean_temp, max_temp, vapour_pressure, wet_day_freq | |
) | |
logger.info("Prediction completed successfully.") | |
return gr.update(value=response, visible=True), gr.update(visible=False) | |
except Exception as e: | |
logger.error(f"Error in prediction: {str(e)}") | |
return "An error occurred during prediction. Please try again.", gr.update(visible=False) | |
with gr.Blocks(css=utils.css, js=utils.js, theme=gr.themes.Ocean(font=gr.themes.GoogleFont("Poppins"), primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink)) as demo: | |
gr.Markdown("## LUMPY SKIN DISEASE PREDICTION", elem_classes="title") | |
with gr.Row(): | |
with gr.Column(scale=5): | |
# Image upload | |
image_input = gr.Image(type="pil", label="Upload Image", height=177, elem_classes="image-input") | |
with gr.Column(scale=5): | |
longitude = gr.Number(label="Longitude") | |
latitude = gr.Number(label="Latitude") | |
with gr.Row(): | |
with gr.Column(scale=5): | |
cloud_cover = gr.Number(label="Monthly Cloud Cover", elem_classes="num-input") | |
evapotranspiration = gr.Number(label="Potential EvapoTranspiration", elem_classes="num-input") | |
with gr.Column(scale=5): | |
precipitation = gr.Number(label="Precipitation", elem_classes="num-input") | |
min_temp = gr.Number(label="Minimum Temperature", elem_classes="num-input") | |
with gr.Column(scale=5): | |
mean_temp = gr.Number(label="Mean Temperature", elem_classes="num-input") | |
max_temp = gr.Number(label="Maximum Temperature", elem_classes="num-input") | |
with gr.Column(scale=5): | |
vapour_pressure = gr.Number(label="Vapour Pressure", elem_classes="num-input") | |
wet_day_freq = gr.Number(label="Wet Day Frequency", elem_classes="num-input") | |
with gr.Row(): | |
predict_button = gr.Button("Predict", variant="primary") | |
processing_text = gr.Markdown("", visible=False, height=100) | |
output_text = gr.Markdown(label="LLM Generated Diagnostic Report", container=True, show_copy_button=True, visible=False) | |
predict_button.click( | |
fn=show_processing_text, | |
inputs=[], | |
outputs=[processing_text, output_text], | |
queue=False | |
) | |
predict_button.click( | |
fn=prediction_with_loading, | |
inputs=[image_input, longitude, latitude, cloud_cover, evapotranspiration, precipitation, min_temp, mean_temp, max_temp, vapour_pressure, wet_day_freq], | |
outputs=[output_text, processing_text], | |
queue=True | |
) | |
demo.launch(share=True) | |