Spaces:
Running
Running
Upload 5 files
Browse files- app.py +55 -0
- model.pkl +3 -0
- requirements.txt +4 -0
- stocks price prediction.ipynb +0 -0
- yahoo_data.xlsx +0 -0
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pickle
|
4 |
+
|
5 |
+
# Function to load the model from pickle
|
6 |
+
def load_model(path):
|
7 |
+
with open(path, 'rb') as f:
|
8 |
+
model = pickle.load(f)
|
9 |
+
return model
|
10 |
+
|
11 |
+
# Define the main function for predicting stock price
|
12 |
+
def predict_stock_price(open_val, high_val, low_val, close_val, adj_close_val, volume, model):
|
13 |
+
try:
|
14 |
+
# Prepare the input data as a numpy array
|
15 |
+
X = np.array([[open_val, high_val, low_val, close_val, adj_close_val]])
|
16 |
+
|
17 |
+
# Use the loaded model for prediction
|
18 |
+
predicted_price = model.predict(X)
|
19 |
+
|
20 |
+
return predicted_price[0]
|
21 |
+
except (ValueError, AttributeError) as e:
|
22 |
+
st.error(f'Error occurred: {str(e)}')
|
23 |
+
return None
|
24 |
+
|
25 |
+
# Define the Streamlit app
|
26 |
+
def main():
|
27 |
+
st.title('Stock Prediction')
|
28 |
+
|
29 |
+
# Load your trained model from pickle
|
30 |
+
model_path = 'model.pkl' # Replace with your actual path
|
31 |
+
model = load_model(model_path)
|
32 |
+
|
33 |
+
# Input fields for user to enter stock data
|
34 |
+
open_val = st.number_input('Open (Range: 0 to 100000)', min_value=0.0, max_value=100000.0, value=0.0)
|
35 |
+
high_val = st.number_input('High (Range: 0 to 100000)', min_value=0.0, max_value=100000.0, value=0.0)
|
36 |
+
low_val = st.number_input('Low (Range: 0 to 100000)', min_value=0.0, max_value=100000.0, value=0.0)
|
37 |
+
close_val = st.number_input('Close* (Range: 0 to 100000)', min_value=0.0, max_value=100000.0, value=0.0)
|
38 |
+
adj_close_val = st.number_input('Adj Close** (Range: 0 to 100000)', min_value=0.0, max_value=100000.0, value=0.0)
|
39 |
+
volume = st.number_input('Volume (Range: 0 to 1,000,000,000)', min_value=0.0, max_value=1000000000.0, value=0.0)
|
40 |
+
|
41 |
+
# Predict button
|
42 |
+
if st.button('Predict'):
|
43 |
+
if any([open_val == 0.0, high_val == 0.0, low_val == 0.0, close_val == 0.0, adj_close_val == 0.0, volume == 0.0]):
|
44 |
+
st.error('Please enter valid numeric values for all fields.')
|
45 |
+
else:
|
46 |
+
# Call prediction function
|
47 |
+
predicted_price = predict_stock_price(open_val, high_val, low_val, close_val, adj_close_val, volume, model)
|
48 |
+
|
49 |
+
if predicted_price is not None:
|
50 |
+
st.success(f'The predicted stock price is: {predicted_price:.2f}')
|
51 |
+
else:
|
52 |
+
st.error('Failed to predict stock price.')
|
53 |
+
|
54 |
+
if __name__ == '__main__':
|
55 |
+
main()
|
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41da2ec13c1ba813e5dc65951ca56417c0e5ec419115b0021a425d31d25a44d2
|
3 |
+
size 613
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
scikit-learn
|
3 |
+
numpy
|
4 |
+
streamlit
|
stocks price prediction.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
yahoo_data.xlsx
ADDED
Binary file (82.5 kB). View file
|
|