|
import gradio as gr
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
from sentence_transformers import SentenceTransformer
|
|
from qdrant_client import QdrantClient
|
|
import torch
|
|
from llama_cpp import Llama
|
|
|
|
llm = Llama.from_pretrained(
|
|
repo_id="Suku0/mistral-7b-instruct-v0.3-bnb-4bit-GGUF",
|
|
filename="mistral-7b-instruct-v0.3-bnb-4bit.Q4_K_M.gguf",
|
|
n_ctx=16384
|
|
)
|
|
embedding_model = SentenceTransformer('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
|
|
qdrant_client = QdrantClient(
|
|
url="https://9a5cbf91-7dac-4dd0-80f6-13e512da1060.europe-west3-0.gcp.cloud.qdrant.io:6333",
|
|
api_key="1M-sCCVolJOOJeRXMBUh4wHfj8bkY4nZyHiau0LBllFr1vsXb1oDPg",
|
|
)
|
|
|
|
def retrieve_context(query):
|
|
query_vector = embedding_model.encode(query).tolist()
|
|
|
|
search_result = qdrant_client.search(
|
|
collection_name="ctx_collection",
|
|
query_vector=query_vector,
|
|
limit=10,
|
|
with_payload=True
|
|
)
|
|
|
|
context = " ".join([hit.payload["text"] for hit in search_result])
|
|
return context
|
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
context = retrieve_context(message)
|
|
prompt = f"""You are a helpful assistant. Please answer the user's question based on the given context. If the context doesn't provide any answer, say the context doesn't provide the answer.
|
|
|
|
### Context:
|
|
{context}
|
|
|
|
### Question:
|
|
{message}
|
|
|
|
### Answer:
|
|
"""
|
|
|
|
response = llm(prompt.format(ctx=context, question=message), max_tokens=243)
|
|
|
|
return response["choices"][0]["text"]
|
|
|
|
demo = gr.ChatInterface(
|
|
respond,
|
|
additional_inputs=[
|
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
|
]
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch()
|
|
|