SumanDhanu's picture
Update app.py
f75caf0 verified
import gradio as gr
from duckduckgo_search import DDGS
from datetime import datetime
import os
import asyncio
import nest_asyncio
from openai import OpenAI
import traceback
import re
try:
from agents import Agent, Runner, function_tool, OpenAIChatCompletionsModel
AGENTS_AVAILABLE = True
except Exception:
print("WARNING: openai-agents package not fully functional, using fallback mode")
AGENTS_AVAILABLE = False
# Apply nest_asyncio to allow nested event loops
nest_asyncio.apply()
# Set up environment variables
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
# Get current date for default value
default_date = datetime.now().strftime("%Y-%m-%d")
# Configure OpenAI client
client = OpenAI(api_key=OPENAI_API_KEY)
# Function to make URLs clickable in Markdown
def make_urls_clickable(text):
# Find URLs in the text
url_pattern = r'(https?://[^\s]+)'
# Replace URLs with markdown links
text_with_links = re.sub(url_pattern, r'[\1](\1)', text)
return text_with_links
# Function to format article output with better readability
def format_articles(text):
# Make URLs clickable
text = make_urls_clickable(text)
# Add better formatting for article titles (lines starting with #)
text = re.sub(r'# (.+)', r'## \1', text)
# Add horizontal rule between articles if not already present
if "---" not in text:
text = re.sub(r'\n\n(?=# )', r'\n\n---\n\n', text)
# Enhance description and URL formatting
text = re.sub(r'\*\*URL\*\*: (.+)', r'**Source**: \1', text)
text = re.sub(r'\*\*Description\*\*:', r'**Summary**:', text)
return text
# Direct search function that doesn't depend on the agents package
def direct_news_search(topic, language="English", search_date=None):
"""Search for news articles using DuckDuckGo directly"""
if not search_date:
search_date = datetime.now().strftime("%Y-%m")
else:
search_date = search_date[:7] # Just get YYYY-MM portion
print(f"Running DuckDuckGo news search for {topic} in {language} for date {search_date}...")
# Map common languages to their search keywords
language_keywords = {
"English": "", # Default, no special keyword needed
"Hindi": "हिंदी",
"Spanish": "español",
"French": "français",
"German": "deutsch",
"Japanese": "日本語",
"Chinese": "中文",
"Russian": "русский",
"Arabic": "العربية",
"Portuguese": "português",
"Italian": "italiano",
"Dutch": "nederlands",
"Korean": "한국어",
"Turkish": "türkçe",
"Kannada": "ಕನ್ನಡ",
"Tamil": "தமிழ்",
"Telugu": "తెలుగు",
"Bengali": "বাংলা",
"Marathi": "मराठी"
}
# Get language keyword if available
lang_keyword = language_keywords.get(language, language)
# Add language to search query if it's not English
search_query = f"{topic} {lang_keyword} {search_date}" if language != "English" else f"{topic} {search_date}"
try:
# DuckDuckGo search
ddg_api = DDGS()
results = ddg_api.text(search_query, max_results=5)
if results:
news_results = "\n\n".join([f"# {result['title']}\n**URL**: {result['href']}\n**Description**: {result['body']}" for result in results])
return news_results
else:
return f"Could not find news results for {topic} in {language} for {search_date}."
except Exception as e:
return f"Error searching for news: {str(e)}"
# Direct OpenAI API call
def generate_with_openai(prompt):
"""Use OpenAI API directly to generate content"""
try:
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=2000
)
return response.choices[0].message.content
except Exception as e:
return f"Error with OpenAI API: {str(e)}"
# Try to set up agents if available
if AGENTS_AVAILABLE:
try:
# Define the model
model = OpenAIChatCompletionsModel(
model="gpt-4o-mini",
openai_client=client
)
# News search tool
@function_tool
def get_news_articles(topic, language="English", search_date=None):
return direct_news_search(topic, language, search_date)
# Create agents
news_agent = Agent(
name="News Agent",
instructions="You provide the latest news articles for a given topic using DuckDuckGo search. You can search for news in different languages when specified. Format each article with a # heading.",
tools=[get_news_articles],
model=model
)
editor_agent = Agent(
name="Editor Assistant",
instructions="Rewrite and give me a news article ready for publishing. Each news story should be in a separate section with a clear headline (use # for headlines). Maintain the original language of the news stories. If the content is in a language other than English, edit and format in that same language. Keep the original URLs and mark them as **URL**: [url]. Use --- to separate articles.",
model=model
)
print("Successfully initialized agent-based workflow")
except Exception as e:
print(f"Failed to initialize agents: {e}")
AGENTS_AVAILABLE = False
# Workflow function for Gradio
def fetch_and_edit_news(topic, language, search_date):
"""Process news request using agents if available, otherwise fall back to direct API calls"""
try:
# Try agent-based approach if available
if AGENTS_AVAILABLE:
try:
print("Attempting to use agent-based workflow...")
# Initialize event loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Run the news agent
news_prompt = f"Get me the news about {topic} in {language} for date {search_date}"
news_result = Runner.run_sync(news_agent, news_prompt)
raw_news = news_result.final_output
# Run the editor agent
editor_prompt = f"Please edit the following news in {language} language. Maintain the original language and URLs. Format with markdown, using # for headlines and --- to separate articles: \n\n{raw_news}"
editor_result = Runner.run_sync(editor_agent, editor_prompt)
edited_news = editor_result.final_output
print("Agent-based workflow completed successfully")
# Format the output with better readability
return format_articles(edited_news)
except Exception as agent_error:
print(f"Agent-based workflow failed: {agent_error}")
print(traceback.format_exc())
print("Falling back to direct API approach...")
# Fall through to the direct approach
else:
print("Using direct API approach (agents not available)...")
# Direct approach (used when agents fail or aren't available)
# Step 1: Get news directly
raw_news = direct_news_search(topic, language, search_date)
if raw_news.startswith("Error") or raw_news.startswith("Could not find"):
return raw_news
# Step 2: Edit the news with OpenAI
editor_prompt = f"""
Please edit and reformat the following news into a cohesive, publication-ready format.
Maintain the original language ({language}).
Format with markdown, using # for headlines and --- to separate articles.
Keep the original URLs and mark them as **URL**: [url].
{raw_news}
"""
edited_news = generate_with_openai(editor_prompt)
# Format the output with better readability
return format_articles(edited_news)
except Exception as e:
error_details = traceback.format_exc()
print(f"Error in workflow: {e}")
print(error_details)
return f"Error processing your request: {str(e)}\n\nPlease check that your OpenAI API key is correctly set in the repository secrets."
# Read custom CSS from file
try:
with open('style.css', 'r') as f:
custom_css = f.read()
except Exception as e:
print(f"Warning: Could not read CSS file: {e}")
# Fallback minimal CSS if file can't be read
custom_css = """
.container { max-width: 900px; margin: auto; }
.article-output { border: 1px solid #ddd; padding: 20px; }
"""
# Create Gradio interface with a custom theme
with gr.Blocks(title="Multilingual AI News Generator", theme=gr.themes.Soft(primary_hue="blue"), css=custom_css) as demo:
with gr.Column(elem_classes="container"):
with gr.Column(elem_classes="header"):
gr.Markdown("# Multilingual AI News Generator")
gr.Markdown("Enter a topic, select a language, and choose a date to receive curated and edited news articles")
with gr.Row(elem_classes="search-options"):
topic_input = gr.Textbox(
label="News Topic",
placeholder="Enter a topic (e.g., AI, Climate Change, Sports)"
)
language_dropdown = gr.Dropdown(
choices=[
"English", "Hindi", "Spanish", "French", "German",
"Japanese", "Chinese", "Russian", "Arabic", "Portuguese",
"Italian", "Dutch", "Korean", "Turkish", "Kannada",
"Tamil", "Telugu", "Bengali", "Marathi"
],
label="Language",
value="English"
)
date_picker = gr.Textbox(
label="Search Date",
placeholder="YYYY-MM-DD",
value=default_date
)
submit_btn = gr.Button("Generate News Article", elem_classes="generate-btn")
# Use Markdown for output to enable clickable links and better formatting
output_box = gr.Markdown(elem_classes="article-output")
submit_btn.click(
fn=fetch_and_edit_news,
inputs=[topic_input, language_dropdown, date_picker],
outputs=output_box
)
# Launch the app
if __name__ == "__main__":
demo.launch()