import gradio as gr from duckduckgo_search import DDGS from datetime import datetime import os import asyncio import nest_asyncio from openai import OpenAI import traceback import re try: from agents import Agent, Runner, function_tool, OpenAIChatCompletionsModel AGENTS_AVAILABLE = True except Exception: print("WARNING: openai-agents package not fully functional, using fallback mode") AGENTS_AVAILABLE = False # Apply nest_asyncio to allow nested event loops nest_asyncio.apply() # Set up environment variables OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") # Get current date for default value default_date = datetime.now().strftime("%Y-%m-%d") # Configure OpenAI client client = OpenAI(api_key=OPENAI_API_KEY) # Function to make URLs clickable in Markdown def make_urls_clickable(text): # Find URLs in the text url_pattern = r'(https?://[^\s]+)' # Replace URLs with markdown links text_with_links = re.sub(url_pattern, r'[\1](\1)', text) return text_with_links # Function to format article output with better readability def format_articles(text): # Make URLs clickable text = make_urls_clickable(text) # Add better formatting for article titles (lines starting with #) text = re.sub(r'# (.+)', r'## \1', text) # Add horizontal rule between articles if not already present if "---" not in text: text = re.sub(r'\n\n(?=# )', r'\n\n---\n\n', text) # Enhance description and URL formatting text = re.sub(r'\*\*URL\*\*: (.+)', r'**Source**: \1', text) text = re.sub(r'\*\*Description\*\*:', r'**Summary**:', text) return text # Direct search function that doesn't depend on the agents package def direct_news_search(topic, language="English", search_date=None): """Search for news articles using DuckDuckGo directly""" if not search_date: search_date = datetime.now().strftime("%Y-%m") else: search_date = search_date[:7] # Just get YYYY-MM portion print(f"Running DuckDuckGo news search for {topic} in {language} for date {search_date}...") # Map common languages to their search keywords language_keywords = { "English": "", # Default, no special keyword needed "Hindi": "हिंदी", "Spanish": "español", "French": "français", "German": "deutsch", "Japanese": "日本語", "Chinese": "中文", "Russian": "русский", "Arabic": "العربية", "Portuguese": "português", "Italian": "italiano", "Dutch": "nederlands", "Korean": "한국어", "Turkish": "türkçe", "Kannada": "ಕನ್ನಡ", "Tamil": "தமிழ்", "Telugu": "తెలుగు", "Bengali": "বাংলা", "Marathi": "मराठी" } # Get language keyword if available lang_keyword = language_keywords.get(language, language) # Add language to search query if it's not English search_query = f"{topic} {lang_keyword} {search_date}" if language != "English" else f"{topic} {search_date}" try: # DuckDuckGo search ddg_api = DDGS() results = ddg_api.text(search_query, max_results=5) if results: news_results = "\n\n".join([f"# {result['title']}\n**URL**: {result['href']}\n**Description**: {result['body']}" for result in results]) return news_results else: return f"Could not find news results for {topic} in {language} for {search_date}." except Exception as e: return f"Error searching for news: {str(e)}" # Direct OpenAI API call def generate_with_openai(prompt): """Use OpenAI API directly to generate content""" try: response = client.chat.completions.create( model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}], temperature=0.7, max_tokens=2000 ) return response.choices[0].message.content except Exception as e: return f"Error with OpenAI API: {str(e)}" # Try to set up agents if available if AGENTS_AVAILABLE: try: # Define the model model = OpenAIChatCompletionsModel( model="gpt-4o-mini", openai_client=client ) # News search tool @function_tool def get_news_articles(topic, language="English", search_date=None): return direct_news_search(topic, language, search_date) # Create agents news_agent = Agent( name="News Agent", instructions="You provide the latest news articles for a given topic using DuckDuckGo search. You can search for news in different languages when specified. Format each article with a # heading.", tools=[get_news_articles], model=model ) editor_agent = Agent( name="Editor Assistant", instructions="Rewrite and give me a news article ready for publishing. Each news story should be in a separate section with a clear headline (use # for headlines). Maintain the original language of the news stories. If the content is in a language other than English, edit and format in that same language. Keep the original URLs and mark them as **URL**: [url]. Use --- to separate articles.", model=model ) print("Successfully initialized agent-based workflow") except Exception as e: print(f"Failed to initialize agents: {e}") AGENTS_AVAILABLE = False # Workflow function for Gradio def fetch_and_edit_news(topic, language, search_date): """Process news request using agents if available, otherwise fall back to direct API calls""" try: # Try agent-based approach if available if AGENTS_AVAILABLE: try: print("Attempting to use agent-based workflow...") # Initialize event loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # Run the news agent news_prompt = f"Get me the news about {topic} in {language} for date {search_date}" news_result = Runner.run_sync(news_agent, news_prompt) raw_news = news_result.final_output # Run the editor agent editor_prompt = f"Please edit the following news in {language} language. Maintain the original language and URLs. Format with markdown, using # for headlines and --- to separate articles: \n\n{raw_news}" editor_result = Runner.run_sync(editor_agent, editor_prompt) edited_news = editor_result.final_output print("Agent-based workflow completed successfully") # Format the output with better readability return format_articles(edited_news) except Exception as agent_error: print(f"Agent-based workflow failed: {agent_error}") print(traceback.format_exc()) print("Falling back to direct API approach...") # Fall through to the direct approach else: print("Using direct API approach (agents not available)...") # Direct approach (used when agents fail or aren't available) # Step 1: Get news directly raw_news = direct_news_search(topic, language, search_date) if raw_news.startswith("Error") or raw_news.startswith("Could not find"): return raw_news # Step 2: Edit the news with OpenAI editor_prompt = f""" Please edit and reformat the following news into a cohesive, publication-ready format. Maintain the original language ({language}). Format with markdown, using # for headlines and --- to separate articles. Keep the original URLs and mark them as **URL**: [url]. {raw_news} """ edited_news = generate_with_openai(editor_prompt) # Format the output with better readability return format_articles(edited_news) except Exception as e: error_details = traceback.format_exc() print(f"Error in workflow: {e}") print(error_details) return f"Error processing your request: {str(e)}\n\nPlease check that your OpenAI API key is correctly set in the repository secrets." # Read custom CSS from file try: with open('style.css', 'r') as f: custom_css = f.read() except Exception as e: print(f"Warning: Could not read CSS file: {e}") # Fallback minimal CSS if file can't be read custom_css = """ .container { max-width: 900px; margin: auto; } .article-output { border: 1px solid #ddd; padding: 20px; } """ # Create Gradio interface with a custom theme with gr.Blocks(title="Multilingual AI News Generator", theme=gr.themes.Soft(primary_hue="blue"), css=custom_css) as demo: with gr.Column(elem_classes="container"): with gr.Column(elem_classes="header"): gr.Markdown("# Multilingual AI News Generator") gr.Markdown("Enter a topic, select a language, and choose a date to receive curated and edited news articles") with gr.Row(elem_classes="search-options"): topic_input = gr.Textbox( label="News Topic", placeholder="Enter a topic (e.g., AI, Climate Change, Sports)" ) language_dropdown = gr.Dropdown( choices=[ "English", "Hindi", "Spanish", "French", "German", "Japanese", "Chinese", "Russian", "Arabic", "Portuguese", "Italian", "Dutch", "Korean", "Turkish", "Kannada", "Tamil", "Telugu", "Bengali", "Marathi" ], label="Language", value="English" ) date_picker = gr.Textbox( label="Search Date", placeholder="YYYY-MM-DD", value=default_date ) submit_btn = gr.Button("Generate News Article", elem_classes="generate-btn") # Use Markdown for output to enable clickable links and better formatting output_box = gr.Markdown(elem_classes="article-output") submit_btn.click( fn=fetch_and_edit_news, inputs=[topic_input, language_dropdown, date_picker], outputs=output_box ) # Launch the app if __name__ == "__main__": demo.launch()