Spaces:
Runtime error
Runtime error
Commit
·
8f9e99e
1
Parent(s):
8f99068
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import nltk
|
2 |
-
from transformers import VisionEncoderDecoderModel, AutoTokenizer, ViTImageProcessor,
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
import streamlit as st
|
@@ -7,6 +7,7 @@ from nltk.corpus import stopwords
|
|
7 |
import os
|
8 |
from io import BytesIO
|
9 |
|
|
|
10 |
os.system('pip install --upgrade transformers')
|
11 |
# os.system('pip install nltk')
|
12 |
nltk.download('stopwords')
|
@@ -24,9 +25,8 @@ feature_extractor = ViTImageProcessor.from_pretrained(
|
|
24 |
tokenizer = AutoTokenizer.from_pretrained(
|
25 |
'nlpconnect/vit-gpt2-image-captioning')
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
gpt2_tokenizer = GPT2Tokenizer.from_pretrained('EleutherAI/gpt-neo-1.3-125')
|
30 |
|
31 |
# Device configuration
|
32 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -115,16 +115,11 @@ def main():
|
|
115 |
# Prepare the prompt
|
116 |
prompt = f"You are a knowledgeable assistant that provides nutritional advice based on a list of ingredients. The identified ingredients are: {preds_str}. Note that some ingredients may not make sense, so use the ones that do. Can you provide a nutritional analysis and suggestions for improvement?"
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
# Generate a sequence of text
|
122 |
-
output = gpt2_model.generate(
|
123 |
-
input_ids, max_length=200, temperature=0.7, pad_token_id=gpt2_tokenizer.eos_token_id)
|
124 |
|
125 |
-
#
|
126 |
-
suggestions =
|
127 |
-
output[:, input_ids.shape[-1]:][0], clean_up_tokenization_spaces=True)
|
128 |
|
129 |
st.subheader("Nutritional Analysis and Suggestions:")
|
130 |
st.write(suggestions)
|
|
|
1 |
import nltk
|
2 |
+
from transformers import VisionEncoderDecoderModel, AutoTokenizer, ViTImageProcessor, pipeline
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
import streamlit as st
|
|
|
7 |
import os
|
8 |
from io import BytesIO
|
9 |
|
10 |
+
|
11 |
os.system('pip install --upgrade transformers')
|
12 |
# os.system('pip install nltk')
|
13 |
nltk.download('stopwords')
|
|
|
25 |
tokenizer = AutoTokenizer.from_pretrained(
|
26 |
'nlpconnect/vit-gpt2-image-captioning')
|
27 |
|
28 |
+
# Set up text generation pipeline
|
29 |
+
generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B')
|
|
|
30 |
|
31 |
# Device configuration
|
32 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
115 |
# Prepare the prompt
|
116 |
prompt = f"You are a knowledgeable assistant that provides nutritional advice based on a list of ingredients. The identified ingredients are: {preds_str}. Note that some ingredients may not make sense, so use the ones that do. Can you provide a nutritional analysis and suggestions for improvement?"
|
117 |
|
118 |
+
# Generate a sequence of text
|
119 |
+
suggestions = generator(prompt, do_sample=True, min_length=200)
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# Extract the generated text
|
122 |
+
suggestions = suggestions[0]['generated_text'][len(prompt):]
|
|
|
123 |
|
124 |
st.subheader("Nutritional Analysis and Suggestions:")
|
125 |
st.write(suggestions)
|