Spaces:
Runtime error
Runtime error
Commit
·
aa1545c
1
Parent(s):
f2b30ac
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,134 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nltk
|
2 |
+
from transformers import VisionEncoderDecoderModel, AutoTokenizer, ViTImageProcessor, GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import streamlit as st
|
6 |
+
from nltk.corpus import stopwords
|
7 |
+
import os
|
8 |
+
from io import BytesIO
|
9 |
|
10 |
+
# os.system('pip install --upgrade transformers')
|
11 |
+
# os.system('pip install nltk')
|
12 |
+
nltk.download('stopwords')
|
13 |
+
|
14 |
+
# Load the pre-trained model
|
15 |
+
model = VisionEncoderDecoderModel.from_pretrained(
|
16 |
+
"SumanthKarnati/Image2Ingredients")
|
17 |
+
model.eval()
|
18 |
+
|
19 |
+
# Define the feature extractor
|
20 |
+
feature_extractor = ViTImageProcessor.from_pretrained(
|
21 |
+
'nlpconnect/vit-gpt2-image-captioning')
|
22 |
+
|
23 |
+
# Load the tokenizer
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
25 |
+
'nlpconnect/vit-gpt2-image-captioning')
|
26 |
+
|
27 |
+
# Load GPT-2 model and tokenizer
|
28 |
+
gpt2_model = GPT2LMHeadModel.from_pretrained('gpt2')
|
29 |
+
gpt2_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
30 |
+
|
31 |
+
# Device configuration
|
32 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
33 |
+
|
34 |
+
# Transfer the model to GPU if available
|
35 |
+
model = model.to(device)
|
36 |
+
|
37 |
+
# Set prediction arguments
|
38 |
+
max_length = 16
|
39 |
+
num_beams = 4
|
40 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
41 |
+
|
42 |
+
# Function to predict ingredients from images
|
43 |
+
|
44 |
+
|
45 |
+
def predict_step(image_files, model, feature_extractor, tokenizer, device, gen_kwargs):
|
46 |
+
images = []
|
47 |
+
for image_file in image_files:
|
48 |
+
if image_file is not None:
|
49 |
+
# Create a BytesIO object from the UploadedFile (image_file)
|
50 |
+
byte_stream = BytesIO(image_file.getvalue())
|
51 |
+
image = Image.open(byte_stream)
|
52 |
+
if image.mode != "RGB":
|
53 |
+
image = image.convert(mode="RGB")
|
54 |
+
images.append(image)
|
55 |
+
|
56 |
+
if not images:
|
57 |
+
return None
|
58 |
+
|
59 |
+
inputs = feature_extractor(images=images, return_tensors="pt")
|
60 |
+
inputs.to(device)
|
61 |
+
output_ids = model.generate(inputs["pixel_values"], **gen_kwargs)
|
62 |
+
|
63 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
64 |
+
preds = [pred.strip() for pred in preds]
|
65 |
+
return preds
|
66 |
+
|
67 |
+
|
68 |
+
# Get the list of English stop words
|
69 |
+
stop_words = set(stopwords.words('english'))
|
70 |
+
|
71 |
+
# Function to remove stop words from a list of words
|
72 |
+
|
73 |
+
|
74 |
+
def remove_stop_words(word_list):
|
75 |
+
return [word for word in word_list if word not in stop_words]
|
76 |
+
|
77 |
+
# Streamlit app code
|
78 |
+
|
79 |
+
|
80 |
+
def main():
|
81 |
+
st.title("Image2Nutrients: Food Ingredient Recognition")
|
82 |
+
st.write("Upload an image of your food to recognize the ingredients!")
|
83 |
+
|
84 |
+
# File upload
|
85 |
+
uploaded_file = st.file_uploader(
|
86 |
+
"Choose an image", type=["jpg", "jpeg", "png"])
|
87 |
+
|
88 |
+
if uploaded_file is not None:
|
89 |
+
# Display the uploaded image
|
90 |
+
image = Image.open(uploaded_file)
|
91 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
92 |
+
|
93 |
+
# Perform ingredient recognition
|
94 |
+
preds = predict_step([uploaded_file], model,
|
95 |
+
feature_extractor, tokenizer, device, gen_kwargs)
|
96 |
+
|
97 |
+
preds = preds[0].split('-')
|
98 |
+
# remove numbers
|
99 |
+
preds = [x for x in preds if not any(c.isdigit() for c in x)]
|
100 |
+
# remove empty strings
|
101 |
+
preds = list(filter(None, preds))
|
102 |
+
# remove duplicates
|
103 |
+
|
104 |
+
preds = list(dict.fromkeys(preds))
|
105 |
+
|
106 |
+
preds = remove_stop_words(preds)
|
107 |
+
|
108 |
+
# Display the recognized ingredients
|
109 |
+
st.subheader("Recognized Ingredients:")
|
110 |
+
for ingredient in preds:
|
111 |
+
st.write(ingredient)
|
112 |
+
|
113 |
+
preds_str = ', '.join(preds)
|
114 |
+
|
115 |
+
# Prepare the prompt
|
116 |
+
prompt = f"You are a knowledgeable assistant that provides nutritional advice based on a list of ingredients. The identified ingredients are: {preds_str}. Note that some ingredients may not make sense, so use the ones that do. Can you provide a nutritional analysis and suggestions for improvement?"
|
117 |
+
|
118 |
+
# Encode and add special tokens
|
119 |
+
input_ids = gpt2_tokenizer.encode(prompt, return_tensors='pt')
|
120 |
+
|
121 |
+
# Generate a sequence of text
|
122 |
+
output = gpt2_model.generate(
|
123 |
+
input_ids, max_length=200, temperature=0.7, pad_token_id=gpt2_tokenizer.eos_token_id)
|
124 |
+
|
125 |
+
# Decode the output
|
126 |
+
suggestions = gpt2_tokenizer.decode(
|
127 |
+
output[:, input_ids.shape[-1]:][0], clean_up_tokenization_spaces=True)
|
128 |
+
|
129 |
+
st.subheader("Nutritional Analysis and Suggestions:")
|
130 |
+
st.write(suggestions)
|
131 |
+
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
main()
|