Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import nltk | |
from transformers import VisionEncoderDecoderModel, AutoTokenizer, ViTImageProcessor, pipeline | |
import torch | |
from PIL import Image | |
from nltk.corpus import stopwords | |
from io import BytesIO | |
nltk.download('stopwords') | |
model = VisionEncoderDecoderModel.from_pretrained("SumanthKarnati/Image2Ingredients") | |
model.eval() | |
feature_extractor = ViTImageProcessor.from_pretrained('nlpconnect/vit-gpt2-image-captioning') | |
tokenizer = AutoTokenizer.from_pretrained('nlpconnect/vit-gpt2-image-captioning') | |
generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B') | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = model.to(device) | |
max_length = 16 | |
num_beams = 4 | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
stop_words = set(stopwords.words('english')) | |
def remove_stop_words(word_list): | |
return [word for word in word_list if word not in stop_words] | |
def predict_step(image_files, model, feature_extractor, tokenizer, device, gen_kwargs): | |
images = [] | |
for image_file in image_files: | |
if image_file is not None: | |
image = Image.open(image_file.name) | |
if image.mode != "RGB": | |
image = image.convert(mode="RGB") | |
images.append(image) | |
if not images: | |
return None | |
inputs = feature_extractor(images=images, return_tensors="pt") | |
inputs.to(device) | |
output_ids = model.generate(inputs["pixel_values"], **gen_kwargs) | |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
return preds | |
def process_image(image): | |
preds = predict_step([image], model, feature_extractor, tokenizer, device, gen_kwargs) | |
preds = preds[0].split('-') | |
preds = [x for x in preds if not any(c.isdigit() for c in x)] | |
preds = list(filter(None, preds)) | |
preds = list(dict.fromkeys(preds)) | |
preds = remove_stop_words(preds) | |
preds_str = ', '.join(preds) | |
prompt = f"You are a knowledgeable assistant that provides nutritional advice based on a list of ingredients. The identified ingredients are: {preds_str}. Note that some ingredients may not make sense, so use the ones that do. Can you provide a nutritional analysis and suggestions for improvement?" | |
suggestions = generator(prompt, do_sample=True, min_length=200) | |
suggestions = suggestions[0]['generated_text'][len(prompt):] | |
return preds, suggestions | |
iface = gr.Interface(fn=process_image, inputs="image", outputs=["text", "text"]) | |
iface.launch() | |