Spaces:
Running
Running
File size: 1,619 Bytes
f3b2c5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import timm
import torch
from torch import nn
import pytorch_lightning as pl
from pytorch_lightning.core.mixins import HyperparametersMixin
class Model200M(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = timm.create_model('convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384', pretrained=False,
num_classes=0)
self.clf = nn.Sequential(
nn.Linear(1536, 128),
nn.ReLU(inplace=True),
nn.Linear(128, 2))
def forward(self, image):
image_features = self.model(image)
return self.clf(image_features)
class Model5M(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = timm.create_model('timm/tf_mobilenetv3_large_100.in1k', pretrained=False, num_classes=0)
self.clf = nn.Sequential(
nn.Linear(1280, 128),
nn.ReLU(inplace=True),
nn.Linear(128, 2))
def forward(self, image):
image_features = self.model(image)
return self.clf(image_features)
class SyntheticV2(pl.LightningModule, HyperparametersMixin):
def __init__(self):
super().__init__()
self.model = timm.create_model('convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384', pretrained=False,
num_classes=0)
self.clf = nn.Sequential(
nn.Linear(1536, 128),
nn.ReLU(inplace=True),
nn.Linear(128, 2))
def forward(self, image):
image_features = self.model(image)
return self.clf(image_features) |