File size: 3,142 Bytes
cfb1a62
 
8121eff
cfb1a62
 
bc5a5b2
8121eff
 
 
cfb1a62
b117341
 
669d93a
 
8121eff
 
669d93a
 
 
8121eff
669d93a
8121eff
669d93a
 
 
 
 
 
8121eff
669d93a
 
 
 
 
 
 
b117341
669d93a
 
 
8121eff
 
669d93a
 
 
8121eff
669d93a
 
bc5a5b2
669d93a
 
 
 
 
 
bc5a5b2
669d93a
 
b117341
 
669d93a
 
b117341
 
8121eff
 
 
 
 
 
 
 
 
 
b117341
 
cfb1a62
b117341
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# rag/rag_pipeline.py

import json
from llama_index.core import Document, VectorStoreIndex
from llama_index.core.node_parser import SentenceWindowNodeParser, SentenceSplitter
from llama_index.core import PromptTemplate


class RAGPipeline:
    def __init__(self, study_json, use_semantic_splitter=False):
        self.study_json = study_json
        self.use_semantic_splitter = use_semantic_splitter
        self.documents = None
        self.index = None

    def load_documents(self):
        if self.documents is None:
            with open(self.study_json, "r") as f:
                self.data = json.load(f)

            self.documents = []

            for index, doc_data in enumerate(self.data):
                doc_content = (
                    f"Title: {doc_data['title']}\n"
                    f"Authors: {', '.join(doc_data['authors'])}\n"
                    f"Full Text: {doc_data['full_text']}"
                )

                metadata = {
                    "title": doc_data.get("title"),
                    "abstract": doc_data.get("abstract"),
                    "authors": doc_data.get("authors", []),
                    "year": doc_data.get("year"),
                    "doi": doc_data.get("doi"),
                }

                self.documents.append(
                    Document(text=doc_content, id_=f"doc_{index}", metadata=metadata)
                )

    def build_index(self):
        if self.index is None:
            self.load_documents()
            sentence_splitter = SentenceSplitter(chunk_size=128, chunk_overlap=13)

            def _split(text: str) -> List[str]:
                return sentence_splitter.split_text(text)

            node_parser = SentenceWindowNodeParser.from_defaults(
                sentence_splitter=_split,
                window_size=3,
                window_metadata_key="window",
                original_text_metadata_key="original_text",
            )

            nodes = node_parser.get_nodes_from_documents(self.documents)
            self.index = VectorStoreIndex(nodes)

    def query(self, question, prompt_template=None):
        self.build_index()  # This will only build the index if it hasn't been built yet

        if prompt_template is None:
            prompt_template = PromptTemplate(
                "Context information is below.\n"
                "---------------------\n"
                "{context_str}\n"
                "---------------------\n"
                "Given this information, please answer the question: {query_str}\n"
                "Include all relevant information from the provided context. "
                "If information comes from multiple sources, please mention all of them. "
                "If the information is not available in the context, please state that clearly. "
                "When quoting specific information, please use square brackets to indicate the source, e.g. [1], [2], etc."
            )

        query_engine = self.index.as_query_engine(
            text_qa_template=prompt_template, similarity_top_k=5
        )
        response = query_engine.query(question)

        return response