acres / app.py
Patrick Walukagga
Users can provide their zotero credentials and study variables
85bbaed
raw
history blame
9.71 kB
import json
from typing import List, Tuple
import os
import gradio as gr
from dotenv import load_dotenv
from slugify import slugify
from config import STUDY_FILES
from rag.rag_pipeline import RAGPipeline
from utils.helpers import generate_follow_up_questions, append_to_study_files
from utils.prompts import (
highlight_prompt,
evidence_based_prompt,
sample_questions,
)
import openai
from config import STUDY_FILES, OPENAI_API_KEY
from utils.zotero_manager import ZoteroManager
load_dotenv()
openai.api_key = OPENAI_API_KEY
# Cache for RAG pipelines
rag_cache = {}
def process_zotero_library_items(zotero_library_id: str, zotero_api_access_key: str) -> str:
if not zotero_library_id or not zotero_api_access_key:
return "Please enter your zotero library Id and API Access Key"
zotero_library_id = zotero_library_id
zotero_library_type = "user" # or "group"
zotero_api_access_key = zotero_api_access_key
message = ""
try:
zotero_manager = ZoteroManager(
zotero_library_id, zotero_library_type, zotero_api_access_key
)
zotero_collections = zotero_manager.get_collections()
zotero_collection_lists = zotero_manager.list_zotero_collections(zotero_collections)
filtered_zotero_collection_lists = (
zotero_manager.filter_and_return_collections_with_items(zotero_collection_lists)
)
for collection in filtered_zotero_collection_lists:
collection_name = collection.get("name")
if collection_name not in STUDY_FILES:
collection_key = collection.get("key")
collection_items = zotero_manager.get_collection_items(collection_key)
zotero_collection_items = (
zotero_manager.get_collection_zotero_items_by_key(collection_key)
)
#### Export zotero collection items to json ####
zotero_items_json = zotero_manager.zotero_items_to_json(zotero_collection_items)
export_file = f"{slugify(collection_name)}_zotero_items.json"
zotero_manager.write_zotero_items_to_json_file(
zotero_items_json, f"data/{export_file}"
)
append_to_study_files("study_files.json", collection_name, f"data/{export_file}")
message = "Successfully processed items in your zotero library"
except Exception as e:
message = f"Error process your zotero library: {str(e)}"
return message
def get_rag_pipeline(study_name: str) -> RAGPipeline:
"""Get or create a RAGPipeline instance for the given study."""
if study_name not in rag_cache:
study_file = STUDY_FILES.get(study_name)
if not study_file:
raise ValueError(f"Invalid study name: {study_name}")
rag_cache[study_name] = RAGPipeline(study_file)
return rag_cache[study_name]
def chat_function(
message: str, study_name: str, prompt_type: str
) -> str:
"""Process a chat message and generate a response using the RAG pipeline."""
if not message.strip():
return "Please enter a valid query."
rag = get_rag_pipeline(study_name)
prompt = {
"Highlight": highlight_prompt,
"Evidence-based": evidence_based_prompt,
}.get(prompt_type)
response = rag.query(message, prompt_template=prompt)
return response.response
def get_study_info(study_name: str) -> str:
"""Retrieve information about the specified study."""
study_file = STUDY_FILES.get(study_name)
if not study_file:
return "Invalid study name"
with open(study_file, "r") as f:
data = json.load(f)
return f"### Number of documents: {len(data)}"
def update_interface(study_name: str) -> Tuple[str, gr.update, gr.update, gr.update]:
"""Update the interface based on the selected study."""
study_info = get_study_info(study_name)
questions = sample_questions.get(study_name, [])[:3]
if not questions:
questions = sample_questions.get("General", [])[:3]
visible_questions = [gr.update(visible=True, value=q) for q in questions]
hidden_questions = [gr.update(visible=False) for _ in range(3 - len(questions))]
return (study_info, *visible_questions, *hidden_questions)
def set_question(question: str) -> str:
return question.lstrip("✨ ")
def process_multi_input(text, study_name, prompt_type):
# Split input based on commas and strip any extra spaces
variable_list = [word.strip().upper() for word in text.split(',')]
user_message =f"Extract and present in a tabular format the following variables for each {study_name} study: {', '.join(variable_list)}"
response = chat_function(user_message, study_name, prompt_type)
return response
def create_gr_interface() -> gr.Blocks:
"""
Create and configure the Gradio interface for the RAG platform.
This function sets up the entire user interface, including:
- Chat interface with message input and display
- Study selection dropdown
- Sample and follow-up question buttons
- Prompt type selection
- Event handlers for user interactions
Returns:
gr.Blocks: The configured Gradio interface ready for launching.
"""
with gr.Blocks() as demo:
gr.Markdown("# ACRES RAG Platform")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Zotero Credentials")
zotero_library_id = gr.Textbox(label="Zotero Library ID", type="password", placeholder="Enter Your Zotero Library ID here...")
zotero_api_access_key = gr.Textbox(label="Zotero API Access Key", type="password", placeholder="Enter Your Zotero API Access Key...")
process_zotero_btn = gr.Button("Process your Zotero Library")
zotero_output = gr.Markdown(label="Zotero")
gr.Markdown("### Study Information")
study_dropdown = gr.Dropdown(
choices=list(STUDY_FILES.keys()),
label="Select Study",
value=list(STUDY_FILES.keys())[0],
)
study_info = gr.Markdown(label="Study Details")
gr.Markdown("### Settings")
prompt_type = gr.Radio(
["Default", "Highlight", "Evidence-based"],
label="Prompt Type",
value="Default",
)
# clear = gr.Button("Clear Chat")
with gr.Column(scale=3):
gr.Markdown("### Study Variables")
with gr.Row():
study_variables = gr.Textbox(
show_label=False,
placeholder="Type your variables separated by commas e.g (Study ID, Study Title, Authors etc)",
scale=4,
lines=1,
autofocus=True,
)
submit_btn = gr.Button("Submit", scale=1)
answer_output = gr.Markdown(label="Answer")
def user(
user_message: str, history: List[List[str]]
) -> Tuple[str, List[List[str]]]:
return "", (
history + [[user_message, None]] if user_message.strip() else history
)
def bot(
history: List[List[str]], study_name: str, prompt_type: str
) -> List[List[str]]:
"""
Generate bot response and update the interface.
This function:
1. Processes the latest user message
2. Generates a response using the RAG pipeline
3. Updates the chat history
4. Generates follow-up questions
5. Prepares interface updates for follow-up buttons
Args:
history (List[List[str]]): The current chat history.
study_name (str): The name of the current study.
prompt_type (str): The type of prompt being used.
Returns:
Tuple[List[List[str]], gr.update, gr.update, gr.update]:
Updated chat history and interface components for follow-up questions.
"""
if not history:
return history, [], [], []
user_message = history[-1][0]
bot_message = chat_function(user_message, history, study_name, prompt_type)
history[-1][1] = bot_message
return history
# msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
# bot,
# [chatbot, study_dropdown, prompt_type],
# [chatbot, *follow_up_btns],
# )
# send_btn.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
# bot,
# [chatbot, study_dropdown, prompt_type],
# [chatbot, *follow_up_btns],
# )
# for btn in follow_up_btns + sample_btns:
# btn.click(set_question, inputs=[btn], outputs=[msg])
# clear.click(lambda: None, None, chatbot, queue=False)
study_dropdown.change(
fn=get_study_info,
inputs=study_dropdown,
outputs=[study_info],
)
process_zotero_btn.click(process_zotero_library_items, inputs=[zotero_library_id, zotero_api_access_key], outputs=[zotero_output], queue=False)
submit_btn.click(process_multi_input, inputs=[study_variables, study_dropdown, prompt_type], outputs=[answer_output], queue=False)
return demo
demo = create_gr_interface()
if __name__ == "__main__":
# demo = create_gr_interface()
demo.launch(share=True, debug=True)