Spaces:
Sleeping
Sleeping
Add import statement for prompts in utils/prompts.py
Browse files
app.py
CHANGED
@@ -1,152 +1,60 @@
|
|
1 |
# app.py
|
2 |
|
|
|
|
|
|
|
3 |
import json
|
4 |
-
from typing import List, Tuple
|
5 |
-
import os
|
6 |
import logging
|
|
|
|
|
7 |
|
8 |
import gradio as gr
|
|
|
9 |
from dotenv import load_dotenv
|
10 |
from slugify import slugify
|
11 |
|
|
|
12 |
from rag.rag_pipeline import RAGPipeline
|
13 |
from utils.helpers import (
|
14 |
-
generate_follow_up_questions,
|
15 |
append_to_study_files,
|
16 |
add_study_files_to_chromadb,
|
17 |
chromadb_client,
|
18 |
)
|
19 |
-
from utils.prompts import
|
20 |
-
highlight_prompt,
|
21 |
-
evidence_based_prompt,
|
22 |
-
sample_questions,
|
23 |
-
)
|
24 |
-
import openai
|
25 |
-
|
26 |
-
from config import STUDY_FILES, OPENAI_API_KEY
|
27 |
from utils.zotero_manager import ZoteroManager
|
28 |
|
29 |
-
|
30 |
-
import io
|
31 |
-
|
32 |
-
import datetime
|
33 |
-
|
34 |
-
load_dotenv()
|
35 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
36 |
|
37 |
openai.api_key = OPENAI_API_KEY
|
38 |
|
39 |
-
#
|
40 |
add_study_files_to_chromadb("study_files.json", "study_files_collection")
|
41 |
|
42 |
# Cache for RAG pipelines
|
43 |
rag_cache = {}
|
44 |
|
45 |
|
46 |
-
def process_zotero_library_items(
|
47 |
-
zotero_library_id: str, zotero_api_access_key: str
|
48 |
-
) -> str:
|
49 |
-
if not zotero_library_id or not zotero_api_access_key:
|
50 |
-
return "Please enter your zotero library Id and API Access Key"
|
51 |
-
|
52 |
-
zotero_library_id = zotero_library_id
|
53 |
-
zotero_library_type = "user" # or "group"
|
54 |
-
zotero_api_access_key = zotero_api_access_key
|
55 |
-
|
56 |
-
message = ""
|
57 |
-
|
58 |
-
try:
|
59 |
-
zotero_manager = ZoteroManager(
|
60 |
-
zotero_library_id, zotero_library_type, zotero_api_access_key
|
61 |
-
)
|
62 |
-
|
63 |
-
zotero_collections = zotero_manager.get_collections()
|
64 |
-
zotero_collection_lists = zotero_manager.list_zotero_collections(
|
65 |
-
zotero_collections
|
66 |
-
)
|
67 |
-
filtered_zotero_collection_lists = (
|
68 |
-
zotero_manager.filter_and_return_collections_with_items(
|
69 |
-
zotero_collection_lists
|
70 |
-
)
|
71 |
-
)
|
72 |
-
|
73 |
-
study_files_data = {} # Dictionary to collect items for ChromaDB
|
74 |
-
|
75 |
-
for collection in filtered_zotero_collection_lists:
|
76 |
-
collection_name = collection.get("name")
|
77 |
-
if collection_name not in STUDY_FILES:
|
78 |
-
collection_key = collection.get("key")
|
79 |
-
collection_items = zotero_manager.get_collection_items(collection_key)
|
80 |
-
zotero_collection_items = (
|
81 |
-
zotero_manager.get_collection_zotero_items_by_key(collection_key)
|
82 |
-
)
|
83 |
-
#### Export zotero collection items to json ####
|
84 |
-
zotero_items_json = zotero_manager.zotero_items_to_json(
|
85 |
-
zotero_collection_items
|
86 |
-
)
|
87 |
-
export_file = f"{slugify(collection_name)}_zotero_items.json"
|
88 |
-
zotero_manager.write_zotero_items_to_json_file(
|
89 |
-
zotero_items_json, f"data/{export_file}"
|
90 |
-
)
|
91 |
-
append_to_study_files(
|
92 |
-
"study_files.json", collection_name, f"data/{export_file}"
|
93 |
-
)
|
94 |
-
|
95 |
-
# Collect for ChromaDB
|
96 |
-
study_files_data[collection_name] = f"data/{export_file}"
|
97 |
-
|
98 |
-
# Update in-memory STUDY_FILES for reference in current session
|
99 |
-
STUDY_FILES.update({collection_name: f"data/{export_file}"})
|
100 |
-
logging.info(f"STUDY_FILES: {STUDY_FILES}")
|
101 |
-
|
102 |
-
# After loop, add all collected data to ChromaDB
|
103 |
-
add_study_files_to_chromadb("study_files.json", "study_files_collection")
|
104 |
-
message = "Successfully processed items in your zotero library"
|
105 |
-
except Exception as e:
|
106 |
-
message = f"Error process your zotero library: {str(e)}"
|
107 |
-
|
108 |
-
return message
|
109 |
-
|
110 |
-
|
111 |
def get_rag_pipeline(study_name: str) -> RAGPipeline:
|
112 |
"""Get or create a RAGPipeline instance for the given study by querying ChromaDB."""
|
113 |
if study_name not in rag_cache:
|
114 |
-
# Query ChromaDB for the study file path by ID
|
115 |
collection = chromadb_client.get_or_create_collection("study_files_collection")
|
116 |
result = collection.get(ids=[study_name]) # Retrieve document by ID
|
117 |
|
118 |
-
# Check if the result contains the requested document
|
119 |
if not result or len(result["metadatas"]) == 0:
|
120 |
raise ValueError(f"Invalid study name: {study_name}")
|
121 |
|
122 |
-
# Extract the file path from the document metadata
|
123 |
study_file = result["metadatas"][0].get("file_path")
|
124 |
if not study_file:
|
125 |
raise ValueError(f"File path not found for study name: {study_name}")
|
126 |
|
127 |
-
# Create and cache the RAGPipeline instance
|
128 |
rag_cache[study_name] = RAGPipeline(study_file)
|
129 |
|
130 |
return rag_cache[study_name]
|
131 |
|
132 |
|
133 |
-
def chat_function(message: str, study_name: str, prompt_type: str) -> str:
|
134 |
-
"""Process a chat message and generate a response using the RAG pipeline."""
|
135 |
-
|
136 |
-
if not message.strip():
|
137 |
-
return "Please enter a valid query."
|
138 |
-
|
139 |
-
rag = get_rag_pipeline(study_name)
|
140 |
-
logging.info(f"rag: ==> {rag}")
|
141 |
-
prompt = {
|
142 |
-
"Highlight": highlight_prompt,
|
143 |
-
"Evidence-based": evidence_based_prompt,
|
144 |
-
}.get(prompt_type)
|
145 |
-
|
146 |
-
response = rag.query(message, prompt_template=prompt)
|
147 |
-
return response.response
|
148 |
-
|
149 |
-
|
150 |
def get_study_info(study_name: str) -> str:
|
151 |
"""Retrieve information about the specified study."""
|
152 |
|
@@ -154,11 +62,9 @@ def get_study_info(study_name: str) -> str:
|
|
154 |
result = collection.get(ids=[study_name]) # Query by study name (as a list)
|
155 |
logging.info(f"Result: ======> {result}")
|
156 |
|
157 |
-
# Check if the document exists in the result
|
158 |
if not result or len(result["metadatas"]) == 0:
|
159 |
raise ValueError(f"Invalid study name: {study_name}")
|
160 |
|
161 |
-
# Extract the file path from the document metadata
|
162 |
study_file = result["metadatas"][0].get("file_path")
|
163 |
logging.info(f"study_file: =======> {study_file}")
|
164 |
if not study_file:
|
@@ -171,46 +77,124 @@ def get_study_info(study_name: str) -> str:
|
|
171 |
|
172 |
def markdown_table_to_csv(markdown_text: str) -> str:
|
173 |
"""Convert a markdown table to CSV format."""
|
174 |
-
# Split the text into lines and remove empty lines
|
175 |
lines = [line.strip() for line in markdown_text.split("\n") if line.strip()]
|
176 |
-
|
177 |
-
# Find the table content (lines starting with |)
|
178 |
table_lines = [line for line in lines if line.startswith("|")]
|
179 |
|
180 |
if not table_lines:
|
181 |
return ""
|
182 |
|
183 |
-
# Process each line to extract cell values
|
184 |
csv_data = []
|
185 |
for line in table_lines:
|
186 |
-
# Skip separator lines (containing only dashes)
|
187 |
if "---" in line:
|
188 |
continue
|
189 |
# Split by |, remove empty strings, and strip whitespace
|
190 |
cells = [cell.strip() for cell in line.split("|") if cell.strip()]
|
191 |
csv_data.append(cells)
|
192 |
|
193 |
-
# Create CSV string
|
194 |
output = io.StringIO()
|
195 |
writer = csv.writer(output)
|
196 |
writer.writerows(csv_data)
|
197 |
return output.getvalue()
|
198 |
|
199 |
|
200 |
-
def
|
201 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
if not questions:
|
206 |
-
questions = sample_questions.get("General", [])[:3]
|
207 |
-
visible_questions = [gr.update(visible=True, value=q) for q in questions]
|
208 |
-
hidden_questions = [gr.update(visible=False) for _ in range(3 - len(questions))]
|
209 |
-
return (study_info, *visible_questions, *hidden_questions)
|
210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
-
|
213 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
|
216 |
def process_multi_input(text, study_name, prompt_type):
|
@@ -222,6 +206,25 @@ def process_multi_input(text, study_name, prompt_type):
|
|
222 |
return [response, gr.update(visible=True)]
|
223 |
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
def create_gr_interface() -> gr.Blocks:
|
226 |
"""
|
227 |
Create and configure the Gradio interface for the RAG platform.
|
@@ -312,44 +315,6 @@ def create_gr_interface() -> gr.Blocks:
|
|
312 |
visible=False,
|
313 |
)
|
314 |
|
315 |
-
def download_as_csv(markdown_content):
|
316 |
-
"""Convert markdown table to CSV and provide for download."""
|
317 |
-
if not markdown_content:
|
318 |
-
return None
|
319 |
-
|
320 |
-
csv_content = markdown_table_to_csv(markdown_content)
|
321 |
-
if not csv_content:
|
322 |
-
return None
|
323 |
-
|
324 |
-
# Create temporary file with actual content
|
325 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
326 |
-
temp_path = f"study_export_{timestamp}.csv"
|
327 |
-
|
328 |
-
with open(temp_path, "w", newline="", encoding="utf-8") as f:
|
329 |
-
f.write(csv_content)
|
330 |
-
|
331 |
-
return temp_path
|
332 |
-
|
333 |
-
def cleanup_temp_files():
|
334 |
-
"""Clean up old temporary files."""
|
335 |
-
try:
|
336 |
-
# Delete files older than 5 minutes
|
337 |
-
current_time = datetime.datetime.now()
|
338 |
-
for file in os.listdir():
|
339 |
-
if file.startswith("study_export_") and file.endswith(".csv"):
|
340 |
-
file_time = datetime.datetime.fromtimestamp(
|
341 |
-
os.path.getmtime(file)
|
342 |
-
)
|
343 |
-
if (current_time - file_time).seconds > 30: # 5 minutes
|
344 |
-
try:
|
345 |
-
os.remove(file)
|
346 |
-
except Exception as e:
|
347 |
-
logging.warning(
|
348 |
-
f"Failed to remove temp file {file}: {e}"
|
349 |
-
)
|
350 |
-
except Exception as e:
|
351 |
-
logging.warning(f"Error during cleanup: {e}")
|
352 |
-
|
353 |
study_dropdown.change(
|
354 |
fn=get_study_info,
|
355 |
inputs=study_dropdown,
|
|
|
1 |
# app.py
|
2 |
|
3 |
+
import csv
|
4 |
+
import datetime
|
5 |
+
import io
|
6 |
import json
|
|
|
|
|
7 |
import logging
|
8 |
+
import os
|
9 |
+
from typing import Tuple
|
10 |
|
11 |
import gradio as gr
|
12 |
+
import openai
|
13 |
from dotenv import load_dotenv
|
14 |
from slugify import slugify
|
15 |
|
16 |
+
from config import STUDY_FILES, OPENAI_API_KEY
|
17 |
from rag.rag_pipeline import RAGPipeline
|
18 |
from utils.helpers import (
|
|
|
19 |
append_to_study_files,
|
20 |
add_study_files_to_chromadb,
|
21 |
chromadb_client,
|
22 |
)
|
23 |
+
from utils.prompts import highlight_prompt, evidence_based_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
from utils.zotero_manager import ZoteroManager
|
25 |
|
26 |
+
# Configure logging
|
|
|
|
|
|
|
|
|
|
|
27 |
logging.basicConfig(level=logging.INFO)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
load_dotenv()
|
30 |
|
31 |
openai.api_key = OPENAI_API_KEY
|
32 |
|
33 |
+
# Initialize ChromaDB with study files
|
34 |
add_study_files_to_chromadb("study_files.json", "study_files_collection")
|
35 |
|
36 |
# Cache for RAG pipelines
|
37 |
rag_cache = {}
|
38 |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def get_rag_pipeline(study_name: str) -> RAGPipeline:
|
41 |
"""Get or create a RAGPipeline instance for the given study by querying ChromaDB."""
|
42 |
if study_name not in rag_cache:
|
|
|
43 |
collection = chromadb_client.get_or_create_collection("study_files_collection")
|
44 |
result = collection.get(ids=[study_name]) # Retrieve document by ID
|
45 |
|
|
|
46 |
if not result or len(result["metadatas"]) == 0:
|
47 |
raise ValueError(f"Invalid study name: {study_name}")
|
48 |
|
|
|
49 |
study_file = result["metadatas"][0].get("file_path")
|
50 |
if not study_file:
|
51 |
raise ValueError(f"File path not found for study name: {study_name}")
|
52 |
|
|
|
53 |
rag_cache[study_name] = RAGPipeline(study_file)
|
54 |
|
55 |
return rag_cache[study_name]
|
56 |
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def get_study_info(study_name: str) -> str:
|
59 |
"""Retrieve information about the specified study."""
|
60 |
|
|
|
62 |
result = collection.get(ids=[study_name]) # Query by study name (as a list)
|
63 |
logging.info(f"Result: ======> {result}")
|
64 |
|
|
|
65 |
if not result or len(result["metadatas"]) == 0:
|
66 |
raise ValueError(f"Invalid study name: {study_name}")
|
67 |
|
|
|
68 |
study_file = result["metadatas"][0].get("file_path")
|
69 |
logging.info(f"study_file: =======> {study_file}")
|
70 |
if not study_file:
|
|
|
77 |
|
78 |
def markdown_table_to_csv(markdown_text: str) -> str:
|
79 |
"""Convert a markdown table to CSV format."""
|
|
|
80 |
lines = [line.strip() for line in markdown_text.split("\n") if line.strip()]
|
|
|
|
|
81 |
table_lines = [line for line in lines if line.startswith("|")]
|
82 |
|
83 |
if not table_lines:
|
84 |
return ""
|
85 |
|
|
|
86 |
csv_data = []
|
87 |
for line in table_lines:
|
|
|
88 |
if "---" in line:
|
89 |
continue
|
90 |
# Split by |, remove empty strings, and strip whitespace
|
91 |
cells = [cell.strip() for cell in line.split("|") if cell.strip()]
|
92 |
csv_data.append(cells)
|
93 |
|
|
|
94 |
output = io.StringIO()
|
95 |
writer = csv.writer(output)
|
96 |
writer.writerows(csv_data)
|
97 |
return output.getvalue()
|
98 |
|
99 |
|
100 |
+
def cleanup_temp_files():
|
101 |
+
"""Clean up old temporary files."""
|
102 |
+
try:
|
103 |
+
current_time = datetime.datetime.now()
|
104 |
+
for file in os.listdir():
|
105 |
+
if file.startswith("study_export_") and file.endswith(".csv"):
|
106 |
+
file_time = datetime.datetime.fromtimestamp(os.path.getmtime(file))
|
107 |
+
# Calculate the time difference in seconds
|
108 |
+
time_difference = (current_time - file_time).total_seconds()
|
109 |
+
if time_difference > 20: # 5 minutes in seconds
|
110 |
+
try:
|
111 |
+
os.remove(file)
|
112 |
+
except Exception as e:
|
113 |
+
logging.warning(f"Failed to remove temp file {file}: {e}")
|
114 |
+
except Exception as e:
|
115 |
+
logging.warning(f"Error during cleanup: {e}")
|
116 |
+
|
117 |
+
|
118 |
+
def chat_function(message: str, study_name: str, prompt_type: str) -> str:
|
119 |
+
"""Process a chat message and generate a response using the RAG pipeline."""
|
120 |
|
121 |
+
if not message.strip():
|
122 |
+
return "Please enter a valid query."
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
rag = get_rag_pipeline(study_name)
|
125 |
+
logging.info(f"rag: ==> {rag}")
|
126 |
+
prompt = {
|
127 |
+
"Highlight": highlight_prompt,
|
128 |
+
"Evidence-based": evidence_based_prompt,
|
129 |
+
}.get(prompt_type)
|
130 |
|
131 |
+
response = rag.query(message, prompt_template=prompt)
|
132 |
+
return response.response
|
133 |
+
|
134 |
+
|
135 |
+
def process_zotero_library_items(
|
136 |
+
zotero_library_id: str, zotero_api_access_key: str
|
137 |
+
) -> str:
|
138 |
+
if not zotero_library_id or not zotero_api_access_key:
|
139 |
+
return "Please enter your zotero library Id and API Access Key"
|
140 |
+
|
141 |
+
zotero_library_id = zotero_library_id
|
142 |
+
zotero_library_type = "user" # or "group"
|
143 |
+
zotero_api_access_key = zotero_api_access_key
|
144 |
+
|
145 |
+
message = ""
|
146 |
+
|
147 |
+
try:
|
148 |
+
zotero_manager = ZoteroManager(
|
149 |
+
zotero_library_id, zotero_library_type, zotero_api_access_key
|
150 |
+
)
|
151 |
+
|
152 |
+
zotero_collections = zotero_manager.get_collections()
|
153 |
+
zotero_collection_lists = zotero_manager.list_zotero_collections(
|
154 |
+
zotero_collections
|
155 |
+
)
|
156 |
+
filtered_zotero_collection_lists = (
|
157 |
+
zotero_manager.filter_and_return_collections_with_items(
|
158 |
+
zotero_collection_lists
|
159 |
+
)
|
160 |
+
)
|
161 |
+
|
162 |
+
study_files_data = {} # Dictionary to collect items for ChromaDB
|
163 |
+
|
164 |
+
for collection in filtered_zotero_collection_lists:
|
165 |
+
collection_name = collection.get("name")
|
166 |
+
if collection_name not in STUDY_FILES:
|
167 |
+
collection_key = collection.get("key")
|
168 |
+
collection_items = zotero_manager.get_collection_items(collection_key)
|
169 |
+
zotero_collection_items = (
|
170 |
+
zotero_manager.get_collection_zotero_items_by_key(collection_key)
|
171 |
+
)
|
172 |
+
# Export zotero collection items to json
|
173 |
+
zotero_items_json = zotero_manager.zotero_items_to_json(
|
174 |
+
zotero_collection_items
|
175 |
+
)
|
176 |
+
export_file = f"{slugify(collection_name)}_zotero_items.json"
|
177 |
+
zotero_manager.write_zotero_items_to_json_file(
|
178 |
+
zotero_items_json, f"data/{export_file}"
|
179 |
+
)
|
180 |
+
append_to_study_files(
|
181 |
+
"study_files.json", collection_name, f"data/{export_file}"
|
182 |
+
)
|
183 |
+
|
184 |
+
# Collect for ChromaDB
|
185 |
+
study_files_data[collection_name] = f"data/{export_file}"
|
186 |
+
|
187 |
+
# Update in-memory STUDY_FILES for reference in current session
|
188 |
+
STUDY_FILES.update({collection_name: f"data/{export_file}"})
|
189 |
+
logging.info(f"STUDY_FILES: {STUDY_FILES}")
|
190 |
+
|
191 |
+
# After loop, add all collected data to ChromaDB
|
192 |
+
add_study_files_to_chromadb("study_files.json", "study_files_collection")
|
193 |
+
message = "Successfully processed items in your zotero library"
|
194 |
+
except Exception as e:
|
195 |
+
message = f"Error process your zotero library: {str(e)}"
|
196 |
+
|
197 |
+
return message
|
198 |
|
199 |
|
200 |
def process_multi_input(text, study_name, prompt_type):
|
|
|
206 |
return [response, gr.update(visible=True)]
|
207 |
|
208 |
|
209 |
+
def download_as_csv(markdown_content):
|
210 |
+
"""Convert markdown table to CSV and provide for download."""
|
211 |
+
if not markdown_content:
|
212 |
+
return None
|
213 |
+
|
214 |
+
csv_content = markdown_table_to_csv(markdown_content)
|
215 |
+
if not csv_content:
|
216 |
+
return None
|
217 |
+
|
218 |
+
# Create temporary file with actual content
|
219 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
220 |
+
temp_path = f"study_export_{timestamp}.csv"
|
221 |
+
|
222 |
+
with open(temp_path, "w", newline="", encoding="utf-8") as f:
|
223 |
+
f.write(csv_content)
|
224 |
+
|
225 |
+
return temp_path
|
226 |
+
|
227 |
+
|
228 |
def create_gr_interface() -> gr.Blocks:
|
229 |
"""
|
230 |
Create and configure the Gradio interface for the RAG platform.
|
|
|
315 |
visible=False,
|
316 |
)
|
317 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
study_dropdown.change(
|
319 |
fn=get_study_info,
|
320 |
inputs=study_dropdown,
|