Spaces:
Running
Running
import gradio as gr | |
from transformers import Wav2Vec2ForCTC, AutoProcessor, Wav2Vec2Processor | |
import torch | |
import librosa | |
import json | |
import os | |
import huggingface_hub | |
from transformers import pipeline | |
# with open('ISO_codes.json', 'r') as file: | |
# iso_codes = json.load(file) | |
# languages = ["lug", "ach", "nyn", "teo"] | |
auth_token = os.environ.get("HF_TOKEN") | |
target_lang_options = {"English": "eng", "Luganda": "lug", "Acholi": "ach", "Runyankole": "nyn", "Lugbara": "lgg"} | |
languages = list(target_lang_options.keys()) | |
# Transcribe audio using custom model | |
def transcribe_audio(input_file, language,chunk_length_s=10, | |
stride_length_s=(4, 2), return_timestamps="word"): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
target_lang_code = target_lang_options[language] | |
# Determine the model_id based on the language | |
if target_lang_code == "eng": | |
model_id = "facebook/mms-1b-all" | |
else: | |
model_id = "Sunbird/sunbird-mms" | |
pipe = pipeline(model=model_id, device=device, token=hf_auth_token) | |
pipe.tokenizer.set_target_lang(target_lang_code) | |
pipe.model.load_adapter(target_lang_code) | |
# Read audio file | |
audio_data = input_file.read() | |
output = pipe(audio_data, chunk_length_s=chunk_length_s, stride_length_s=stride_length_s, return_timestamps=return_timestamps) | |
return output | |
description = '''ASR with salt-mms''' | |
iface = gr.Interface(fn=transcribe_audio, | |
inputs=[ | |
gr.Audio(source="microphone", type="filepath", label="Record Audio"), | |
gr.Audio(source="upload", type="filepath", label="Upload Audio"), | |
gr.Dropdown(choices=languages, label="Language", value="English") | |
], | |
outputs=gr.Textbox(label="Transcription"), | |
description=description | |
) | |
iface.launch() |