File size: 7,505 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

import pyclipper
import cv2
import numpy as np
from shapely.geometry import Polygon
import torch

class SegDetectorRepresenter():
    def __init__(self, thresh=0.6, box_thresh=0.8, max_candidates=1000, unclip_ratio=2.2):
        self.min_size = 3
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio

    def __call__(self, batch, pred, is_output_polygon=False):
        '''
        batch: (image, polygons, ignore_tags
        batch: a dict produced by dataloaders.
            image: tensor of shape (N, C, H, W).
            polygons: tensor of shape (N, K, 4, 2), the polygons of objective regions.
            ignore_tags: tensor of shape (N, K), indicates whether a region is ignorable or not.
            shape: the original shape of images.
            filename: the original filenames of images.
        pred:
            binary: text region segmentation map, with shape (N, H, W)
            thresh: [if exists] thresh hold prediction with shape (N, H, W)
            thresh_binary: [if exists] binarized with threshold, (N, H, W)
        '''
        pred = pred[:, 0, :, :]
        segmentation = self.binarize(pred)
        boxes_batch = []
        scores_batch = []
        batch_size = pred.size(0) if isinstance(pred, torch.Tensor) else pred.shape[0]
        for batch_index in range(batch_size):
            height, width = batch['shape'][batch_index]
            if is_output_polygon:
                boxes, scores = self.polygons_from_bitmap(pred[batch_index], segmentation[batch_index], width, height)
            else:
                boxes, scores = self.boxes_from_bitmap(pred[batch_index], segmentation[batch_index], width, height)
            boxes_batch.append(boxes)
            scores_batch.append(scores)
        return boxes_batch, scores_batch

    def binarize(self, pred):
        return pred > self.thresh

    def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (H, W),
            whose values are binarized as {0, 1}
        '''

        assert len(_bitmap.shape) == 2
        bitmap = _bitmap.cpu().numpy()  # The first channel
        pred = pred.cpu().detach().numpy()
        height, width = bitmap.shape
        boxes = []
        scores = []

        contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

        for contour in contours[:self.max_candidates]:
            epsilon = 0.005 * cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, epsilon, True)
            points = approx.reshape((-1, 2))
            if points.shape[0] < 4:
                continue
            # _, sside = self.get_mini_boxes(contour)
            # if sside < self.min_size:
            #     continue
            score = self.box_score_fast(pred, contour.squeeze(1))
            if self.box_thresh > score:
                continue

            if points.shape[0] > 2:
                box = self.unclip(points, unclip_ratio=self.unclip_ratio)
                if len(box) > 1:
                    continue
            else:
                continue
            box = box.reshape(-1, 2)
            _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
            if sside < self.min_size + 2:
                continue

            if not isinstance(dest_width, int):
                dest_width = dest_width.item()
                dest_height = dest_height.item()

            box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
            boxes.append(box)
            scores.append(score)
        return boxes, scores

    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (H, W),
            whose values are binarized as {0, 1}
        '''

        assert len(_bitmap.shape) == 2
        if isinstance(pred, torch.Tensor):
            bitmap = _bitmap.cpu().numpy()  # The first channel
            pred = pred.cpu().detach().numpy()
        else:
            bitmap = _bitmap
        height, width = bitmap.shape
        try:
            contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        except ValueError:
            return [], []
        num_contours = min(len(contours), self.max_candidates)
        boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
        scores = np.zeros((num_contours,), dtype=np.float32)

        for index in range(num_contours):
            contour = contours[index].squeeze(1)
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
            score = self.box_score_fast(pred, contour)
            if self.box_thresh > score:
                continue

            box = self.unclip(points, unclip_ratio=self.unclip_ratio).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)
            if not isinstance(dest_width, int):
                dest_width = dest_width.item()
                dest_height = dest_height.item()

            box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
            startidx = box.sum(axis=1).argmin()
            box = np.roll(box, 4-startidx, 0)
            box = np.array(box)
            boxes[index, :, :] = box.astype(np.int16)
            scores[index] = score
        return boxes, scores

    def unclip(self, box, unclip_ratio=1.8):
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [points[index_1], points[index_2], points[index_3], points[index_4]]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int32), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int32), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int32), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int32), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]