File size: 6,332 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from abc import abstractmethod
from typing import List, Tuple
from collections import Counter
import numpy as np
import cv2

from ..utils import InfererModule, ModelWrapper, Quadrilateral


class CommonDetector(InfererModule):

    async def detect(self, image: np.ndarray, detect_size: int, text_threshold: float, box_threshold: float, unclip_ratio: float,
                     invert: bool, gamma_correct: bool, rotate: bool, auto_rotate: bool = False, verbose: bool = False):
        '''
        Returns textblock list and text mask.
        '''

        # Apply filters
        img_h, img_w = image.shape[:2]
        orig_image = image.copy()
        minimum_image_size = 400
        # Automatically add border if image too small (instead of simply resizing due to them more likely containing large fonts)
        add_border = min(img_w, img_h) < minimum_image_size
        if rotate:
            self.logger.debug('Adding rotation')
            image = self._add_rotation(image)
        if add_border:
            self.logger.debug('Adding border')
            image = self._add_border(image, minimum_image_size)
        if invert:
            self.logger.debug('Adding inversion')
            image = self._add_inversion(image)
        if gamma_correct:
            self.logger.debug('Adding gamma correction')
            image = self._add_gamma_correction(image)
        # if True:
        #     self.logger.debug('Adding histogram equalization')
        #     image = self._add_histogram_equalization(image)

        # cv2.imwrite('histogram.png', image)
        # cv2.waitKey(0)

        # Run detection
        textlines, raw_mask, mask = await self._detect(image, detect_size, text_threshold, box_threshold, unclip_ratio, verbose)
        textlines = list(filter(lambda x: x.area > 1, textlines))

        # Remove filters
        if add_border:
            textlines, raw_mask, mask = self._remove_border(image, img_w, img_h, textlines, raw_mask, mask)
        if auto_rotate:
            # Rotate if horizontal aspect ratios are prevalent to potentially improve detection
            if len(textlines) > 0:
                orientations = ['h' if txtln.aspect_ratio > 1 else 'v' for txtln in textlines]
                majority_orientation = Counter(orientations).most_common(1)[0][0]
            else:
                majority_orientation = 'h'
            if majority_orientation == 'h':
                self.logger.info('Rerunning detection with 90° rotation')
                return await self.detect(orig_image, detect_size, text_threshold, box_threshold, unclip_ratio, invert, gamma_correct,
                                         rotate=(not rotate), auto_rotate=False, verbose=verbose)
        if rotate:
            textlines, raw_mask, mask = self._remove_rotation(textlines, raw_mask, mask, img_w, img_h)

        return textlines, raw_mask, mask

    @abstractmethod
    async def _detect(self, image: np.ndarray, detect_size: int, text_threshold: float, box_threshold: float,
                      unclip_ratio: float, verbose: bool = False) -> Tuple[List[Quadrilateral], np.ndarray, np.ndarray]:
        pass

    def _add_border(self, image: np.ndarray, target_side_length: int):
        old_h, old_w = image.shape[:2]
        new_w = new_h = max(old_w, old_h, target_side_length)
        new_image = np.zeros([new_h, new_w, 3]).astype(np.uint8)
        # new_image[:] = np.array([255, 255, 255], np.uint8)
        x, y = 0, 0
        # x, y = (new_h - old_h) // 2, (new_w - old_w) // 2
        new_image[y:y+old_h, x:x+old_w] = image
        return new_image

    def _remove_border(self, image: np.ndarray, old_w: int, old_h: int, textlines: List[Quadrilateral], raw_mask, mask):
        new_h, new_w = image.shape[:2]
        raw_mask = cv2.resize(raw_mask, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
        raw_mask = raw_mask[:old_h, :old_w]
        if mask is not None:
            mask = cv2.resize(mask, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
            mask = mask[:old_h, :old_w]

        # Filter out regions within the border and clamp the points of the remaining regions
        new_textlines = []
        for txtln in textlines:
            if txtln.xyxy[0] >= old_w and txtln.xyxy[1] >= old_h:
                continue
            points = txtln.pts
            points[:,0] = np.clip(points[:,0], 0, old_w)
            points[:,1] = np.clip(points[:,1], 0, old_h)
            new_txtln = Quadrilateral(points, txtln.text, txtln.prob)
            new_textlines.append(new_txtln)
        return new_textlines, raw_mask, mask

    def _add_rotation(self, image: np.ndarray):
        return np.rot90(image, k=-1)

    def _remove_rotation(self, textlines, raw_mask, mask, img_w, img_h):
        raw_mask = np.ascontiguousarray(np.rot90(raw_mask))
        if mask is not None:
            mask = np.ascontiguousarray(np.rot90(mask).astype(np.uint8))

        for i, txtln in enumerate(textlines):
            rotated_pts = txtln.pts[:,[1,0]]
            rotated_pts[:,1] = -rotated_pts[:,1] + img_h
            textlines[i] = Quadrilateral(rotated_pts, txtln.text, txtln.prob)
        return textlines, raw_mask, mask

    def _add_inversion(self, image: np.ndarray):
        return cv2.bitwise_not(image)

    def _add_gamma_correction(self, image: np.ndarray):
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        mid = 0.5
        mean = np.mean(gray)
        gamma = np.log(mid * 255) / np.log(mean)
        img_gamma = np.power(image, gamma).clip(0,255).astype(np.uint8)
        return img_gamma

    def _add_histogram_equalization(self, image: np.ndarray):
        img_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)

        # equalize the histogram of the Y channel
        img_yuv[:,:,0] = cv2.equalizeHist(img_yuv[:,:,0])

        # convert the YUV image back to RGB format
        img_output = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
        return img_output


class OfflineDetector(CommonDetector, ModelWrapper):
    _MODEL_SUB_DIR = 'detection'

    async def _detect(self, *args, **kwargs):
        return await self.infer(*args, **kwargs)

    @abstractmethod
    async def _infer(self, image: np.ndarray, detect_size: int, text_threshold: float, box_threshold: float,
                       unclip_ratio: float, verbose: bool = False):
        pass