File size: 6,639 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
import cv2
import random
from typing import List

def hex2bgr(hex):
    gmask = 254 << 8
    rmask = 254
    b = hex >> 16
    g = (hex & gmask) >> 8
    r = hex & rmask
    return np.stack([b, g, r]).transpose()

def union_area(bboxa, bboxb):
    x1 = max(bboxa[0], bboxb[0])
    y1 = max(bboxa[1], bboxb[1])
    x2 = min(bboxa[2], bboxb[2])
    y2 = min(bboxa[3], bboxb[3])
    if y2 < y1 or x2 < x1:
        return -1
    return (y2 - y1) * (x2 - x1)

def get_yololabel_strings(clslist, labellist):
    content = ''
    for cls, xywh in zip(clslist, labellist):
        content += str(int(cls)) + ' ' + ' '.join([str(e) for e in xywh]) + '\n'
    if len(content) != 0:
        content = content[:-1]
    return content

# 4 points bbox to 8 points polygon
def xywh2xyxypoly(xywh, to_int=True):
    xyxypoly = np.tile(xywh[:, [0, 1]], 4)
    xyxypoly[:, [2, 4]] += xywh[:, [2]]
    xyxypoly[:, [5, 7]] += xywh[:, [3]]
    if to_int:
        xyxypoly = xyxypoly.astype(np.int64)
    return xyxypoly

def xyxy2yolo(xyxy, w: int, h: int):
    if xyxy == [] or xyxy == np.array([]) or len(xyxy) == 0:
        return None
    if isinstance(xyxy, list):
        xyxy = np.array(xyxy)
    if len(xyxy.shape) == 1:
        xyxy = np.array([xyxy])
    yolo = np.copy(xyxy).astype(np.float64)
    yolo[:, [0, 2]] =  yolo[:, [0, 2]] / w
    yolo[:, [1, 3]] = yolo[:, [1, 3]] / h
    yolo[:, [2, 3]] -= yolo[:, [0, 1]]
    yolo[:, [0, 1]] += yolo[:, [2, 3]] / 2
    return yolo

def yolo_xywh2xyxy(xywh: np.array, w: int, h:  int, to_int=True):
    if xywh is None:
        return None
    if len(xywh) == 0:
        return None
    if len(xywh.shape) == 1:
        xywh = np.array([xywh])
    xywh[:, [0, 2]] *= w
    xywh[:, [1, 3]] *= h
    xywh[:, [0, 1]] -= xywh[:, [2, 3]] / 2
    xywh[:, [2, 3]] += xywh[:, [0, 1]]
    if to_int:
        xywh = xywh.astype(np.int64)
    return xywh

def letterbox(im, new_shape=(640, 640), color=(0, 0, 0), auto=False, scaleFill=False, scaleup=True, stride=128):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if not isinstance(new_shape, tuple):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    # dw /= 2  # divide padding into 2 sides
    # dh /= 2
    dh, dw = int(dh), int(dw)

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, 0, dh, 0, dw, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)

def resize_keepasp(im, new_shape=640, scaleup=True, interpolation=cv2.INTER_LINEAR, stride=None):
    shape = im.shape[:2]  # current shape [height, width]

    if new_shape is not None:
        if not isinstance(new_shape, tuple):
            new_shape = (new_shape, new_shape)
    else:
        new_shape = shape

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))

    if stride is not None:
        h, w = new_unpad
        if new_shape[0] % stride != 0:
            new_h = (stride - (new_shape[0] % stride)) + h
        else:
            new_h = h
        if w % stride != 0:
            new_w = (stride - (w % stride)) + w
        else:
            new_w = w
        new_unpad = (new_h, new_w)

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=interpolation)
    return im

def enlarge_window(rect, im_w, im_h, ratio=2.5, aspect_ratio=1.0) -> List:
    assert ratio > 1.0
    
    x1, y1, x2, y2 = rect
    w = x2 - x1
    h = y2 - y1

    # https://numpy.org/doc/stable/reference/generated/numpy.roots.html
    coeff = [aspect_ratio, w+h*aspect_ratio, (1-ratio)*w*h]
    roots = np.roots(coeff)
    roots.sort()
    delta = int(round(roots[-1] / 2 ))
    delta_w = int(delta * aspect_ratio)
    delta_w = min(x1, im_w - x2, delta_w)
    delta = min(y1, im_h - y2, delta)
    rect = np.array([x1-delta_w, y1-delta, x2+delta_w, y2+delta], dtype=np.int64)
    return rect.tolist()

def draw_connected_labels(num_labels, labels, stats, centroids, names="draw_connected_labels", skip_background=True):
    labdraw = np.zeros((labels.shape[0], labels.shape[1], 3), dtype=np.uint8)
    max_ind = 0
    if isinstance(num_labels, int):
        num_labels = range(num_labels)

    # for ind, lab in enumerate((range(num_labels))):
    for lab in num_labels:
        if skip_background and lab == 0:
            continue
        randcolor = (random.randint(0,255), random.randint(0,255), random.randint(0,255))
        labdraw[np.where(labels==lab)] = randcolor
        maxr, minr = 0.5, 0.001
        maxw, maxh = stats[max_ind][2] * maxr, stats[max_ind][3] * maxr
        minarea = labdraw.shape[0] * labdraw.shape[1] * minr

        stat = stats[lab]
        bboxarea = stat[2] * stat[3]
        if stat[2] < maxw and stat[3] < maxh and bboxarea > minarea:
            pix = np.zeros((labels.shape[0], labels.shape[1]), dtype=np.uint8)
            pix[np.where(labels==lab)] = 255

            rect = cv2.minAreaRect(cv2.findNonZero(pix))
            box = np.int0(cv2.boxPoints(rect))
            labdraw = cv2.drawContours(labdraw, [box], 0, randcolor, 2)
            labdraw = cv2.circle(labdraw, (int(centroids[lab][0]),int(centroids[lab][1])), radius=5, color=(random.randint(0,255), random.randint(0,255), random.randint(0,255)), thickness=-1)                

    cv2.imshow(names, labdraw)
    return labdraw