File size: 7,225 Bytes
9dce458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init

from torchvision.models import resnet34

import einops
import math

class ImageMultiheadSelfAttention(nn.Module):
    def __init__(self, planes):
        super(ImageMultiheadSelfAttention, self).__init__()
        self.attn = nn.MultiheadAttention(planes, 4)
    def forward(self, x):
        res = x
        n, c, h, w = x.shape
        x = einops.rearrange(x, 'n c h w -> (h w) n c')
        x = self.attn(x, x, x)[0]
        x = einops.rearrange(x, '(h w) n c -> n c h w', n = n, c = c, h = h, w = w)
        return res + x

class double_conv(nn.Module):
    def __init__(self, in_ch, mid_ch, out_ch, stride = 1, planes = 256):
        super(double_conv, self).__init__()
        self.planes = planes
        # down = None
        # if stride > 1:
        #     down = nn.Sequential(
        #         nn.AvgPool2d(2, 2),
        #         nn.Conv2d(in_ch + mid_ch, self.planes * Bottleneck.expansion, kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(self.planes * Bottleneck.expansion)
        #         )
        self.down = None
        if stride > 1:
            self.down = nn.AvgPool2d(2,stride=2)
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch + mid_ch, mid_ch, kernel_size=3, padding=1, stride = 1, bias=False),
            nn.BatchNorm2d(mid_ch),
            nn.ReLU(inplace=True),
            #Bottleneck(mid_ch, self.planes, stride, down, 2, 1, avd = True, norm_layer = nn.BatchNorm2d),
            nn.Conv2d(mid_ch, out_ch, kernel_size=3, stride = 1, padding=1, bias=False),
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        if self.down is not None:
            x = self.down(x)
        x = self.conv(x)
        return x

class CRAFT_net(nn.Module):
    def __init__(self):
        super(CRAFT_net, self).__init__()
        self.backbone = resnet34()

        self.conv_rs = nn.Sequential(
            nn.Conv2d(64, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
            nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
            nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
            nn.Conv2d(32, 32, kernel_size=1), nn.ReLU(inplace=True),
            nn.Conv2d(32, 1, kernel_size=1),
            nn.Sigmoid()
        )

        self.conv_as = nn.Sequential(
            nn.Conv2d(64, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
            nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
            nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
            nn.Conv2d(32, 32, kernel_size=1), nn.ReLU(inplace=True),
            nn.Conv2d(32, 1, kernel_size=1),
            nn.Sigmoid()
        )

        self.conv_mask = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True),
            nn.Conv2d(64, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
            nn.Conv2d(32, 1, kernel_size=1),
            nn.Sigmoid()
        )

        self.down_conv1 = double_conv(0, 512, 512, 2)
        self.down_conv2 = double_conv(0, 512, 512, 2)
        self.down_conv3 = double_conv(0, 512, 512, 2)

        self.upconv1 = double_conv(0, 512, 256)
        self.upconv2 = double_conv(256, 512, 256)
        self.upconv3 = double_conv(256, 512, 256)
        self.upconv4 = double_conv(256, 512, 256, planes = 128)
        self.upconv5 = double_conv(256, 256, 128, planes = 64)
        self.upconv6 = double_conv(128, 128, 64, planes = 32)
        self.upconv7 = double_conv(64, 64, 64, planes = 16)

    def forward_train(self, x):
        x = self.backbone.conv1(x)
        x = self.backbone.bn1(x)
        x = self.backbone.relu(x)
        x = self.backbone.maxpool(x) # 64@384

        h4 = self.backbone.layer1(x) # 64@384
        h8 = self.backbone.layer2(h4) # 128@192
        h16 = self.backbone.layer3(h8) # 256@96
        h32 = self.backbone.layer4(h16) # 512@48
        h64 = self.down_conv1(h32) # 512@24
        h128 = self.down_conv2(h64) # 512@12
        h256 = self.down_conv3(h128) # 512@6

        up256 = F.interpolate(self.upconv1(h256), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 512@12
        up128 = F.interpolate(self.upconv2(torch.cat([up256, h128], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) #51264@24
        up64 = F.interpolate(self.upconv3(torch.cat([up128, h64], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 256@48
        up32 = F.interpolate(self.upconv4(torch.cat([up64, h32], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 256@96
        up16 = F.interpolate(self.upconv5(torch.cat([up32, h16], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 128@192
        up8 = F.interpolate(self.upconv6(torch.cat([up16, h8], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 64@384
        up4 = F.interpolate(self.upconv7(torch.cat([up8, h4], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 64@768

        ascore = self.conv_as(up4)
        rscore = self.conv_rs(up4)

        return torch.cat([rscore, ascore], dim = 1), self.conv_mask(up4)

    def forward(self, x):
        x = self.backbone.conv1(x)
        x = self.backbone.bn1(x)
        x = self.backbone.relu(x)
        x = self.backbone.maxpool(x) # 64@384

        h4 = self.backbone.layer1(x) # 64@384
        h8 = self.backbone.layer2(h4) # 128@192
        h16 = self.backbone.layer3(h8) # 256@96
        h32 = self.backbone.layer4(h16) # 512@48
        h64 = self.down_conv1(h32) # 512@24
        h128 = self.down_conv2(h64) # 512@12
        h256 = self.down_conv3(h128) # 512@6

        up256 = F.interpolate(self.upconv1(h256), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 512@12
        up128 = F.interpolate(self.upconv2(torch.cat([up256, h128], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) #51264@24
        up64 = F.interpolate(self.upconv3(torch.cat([up128, h64], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 256@48
        up32 = F.interpolate(self.upconv4(torch.cat([up64, h32], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 256@96
        up16 = F.interpolate(self.upconv5(torch.cat([up32, h16], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 128@192
        up8 = F.interpolate(self.upconv6(torch.cat([up16, h8], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 64@384
        up4 = F.interpolate(self.upconv7(torch.cat([up8, h4], dim = 1)), scale_factor = (2, 2), mode = 'bilinear', align_corners = False) # 64@768

        ascore = self.conv_as(up4)
        rscore = self.conv_rs(up4)

        return torch.cat([rscore, ascore], dim = 1), self.conv_mask(up4)

if __name__ == '__main__':
    net = CRAFT_net().cuda()
    img = torch.randn(2, 3, 1536, 1536).cuda()
    print(net.forward_train(img)[0].shape)